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Abstract 
The semi-probabilistic method necessitates proper partial safety-factors for material strength, calibrated in 

order to achieve the desired probability of collapse in the construction life-time. Starting from a statistical 

distribution of glass strength à là Weibull, obtained in a previous extensive experimental campaign, here the 

calibration has been conducted using a full probabilistic method of level III in paradigmatic examples, 

accounting for wind, snow and personnel (anthropic) actions. Results are in agreement with empirical 

estimates based upon experience and practice.  

1 Introduction 
 
Glass is being more and more used with structural purpose as beams, plates or shells, to form columns, fins, 

walls, frames, façades, roofs [Beatini & Royer-Carfagni., 2011]. Glass structures are rather expensive and 

potentially dangerous because of the intrinsic brittleness of the material, but quite surprisingly the current 

design practice still relies upon rules of thumb or personal experience, sometimes not corroborated by 

definite structural calculations. This is why there is an increasing effort, both at the national and international 

level, to define consistent structural codes especially conceived of for the design of glass, according to the 

same basic concepts and safety requirements used for other construction materials (concrete, steel, timber) 

when used in structural applications. 

However, the design of structures made of glass presents specific peculiarities with respect to others of 

traditional building materials [Biolzi et al., 2010]. Glass is the brittle material par excellence. This renders its 

use in structural applications quite problematic because even a whatsoever small accident may produce 

catastrophic collapse. In fact, whereas steel or concrete structures possess sufficient structural ductility to 

accommodate unusual loading and/or distortions, glass breaks whenever the local value of the stress 

overcomes the limit value of strength in a whatever small portion [Royer Carfagni & Silvestri, 2009]. Failure 

of glass is in fact associated with the progression of one dominant defect (micro-crack), i.e., the one which 

undergoes the most severe combination of stress with respect to its intrinsic size (crack width and stress 

intensity factor) [Shand, 1961; Wiederhorn & Bolz, 1970; Wan et al., 1961]. This is why the weakest-link 

model of failure, usually interpreted at the macroscopic level by a Weibull statistical distribution of material 

strengths, is usually considered the one which best adapts to this case [Evans, 1978; Batdorf & 

Heinisch,1978; Chao & Shetty, 1990]. 

In view of the use of the semi-probabilistic, or level I, method for structural calculations [CEN-TC250, 

2005a], it is of crucial importance the proper definition of partial safety-factors for material strength, to be 

calibrated in order to achieve the desired probability of collapse in the construction life-time [Madsen et al., 

1985]. However, due to the aforementioned peculiarities of glass, it would be meaningless to use for such 

coefficients the numbers traditionally employed for other building materials. Also the use of methods of 

level II should be questioned, because the values of the safety margin ( index) depends upon the specific 

probability distributions that are used to interpret the effects of actions and the material resistance and, to our 
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knowledge, no specific treatment does exist for what the Weibull distribution, specifically, is concerned 

[Madsen et al., 1985].  

We are not aware of any existing standard for glass that considers a probabilistic base for the calibration of 

partial safety factors. Very recently, for example, the CEN/TC129/WG8 has proposed the new prEN16612
1
 

“Glass in building – Determination of the load resistance of glass panes by calculation and testing” [CEN-

TC129-WG8, 2013], which claims to follow the basics of design established in EN 1990 [CEN-TC250a, 

2005]. However, the partial safety factors for material strength proposed in prEN16612 are not justified by a 

probabilistic calculation, or are not reported because left to the national annexes. There are several national 

standards especially conceived of for specific applications of glass panes (mainly façades), but the design 

strengths and safety factors therein proposed, as well as the calculation methods [Galuppi & Royer-Carfagni, 

2013], are mainly based upon practical experience and rules of thumb.  

It may be worth mentioning that, at the European level, the Regulation n. 305/2011
2
, repealing Council 

Directive 89/106/ECC, has laid down harmonized conditions for the marketing of construction products, 

defining the basic requirements for construction works through seven categories. All structural elements 

must comply with Basic Requirement n. 1 (BR1) – Mechanical resistance and stability – which is achieved 

through the Eurocode documents. On the other hand, existing standards for glass, including prEN16612, 

have been traditionally considered within the framework of Basic Requirement n. 4 (BR4) – Safety and 

accessibility in use - which is outside BR1. This may be (partially) justifiable if the glass work is an infill 

panel whose failure does not implies disproportionate risks to the cause that produced it, but the modern 

daring use of structural glass does not allow neglecting the mechanical resistance and stability requirements. 

As a matter of fact, our personal opinion is that limited attention has been paid to mechanical strength in 

existing regulations: this is why, in some cases, reference to documents referring to BR4 to calculate beams, 

roofs, balustrades and challenging structural façades may be misleading and inconsistent [Galuppi & Royer-

Carfagni, 2013].  

Most recently, the works for a new Eurocode on structural glass aiming at achieving BR1 have just started, 

but a few years from now will be necessary to have at least a preliminary draft. An attempt to fill, at least 

partially, the aforementioned gap has been made in Italy through the National Research Council document 

CNR-DT210 “Instructions for the design, construction and control of buildings with structural glass 

elements” [CNR, 2013]. At the time of the present writing this document has not yet been approved, but its 

major novelty will be the introduction of the probabilistic approach to structural safety.  

The aim of this article is to present a proper calibration of material partial safety factors for the structural 

design of glass with the probabilistic method. This will be achieved by using full probabilistic methods of 

level III [Madsen et al., 1985] in paradigmatic examples, accounting for wind, snow and personnel 

(anthropic) actions. Various aspects will necessitate of particular consideration, among which the statistical 

description of glass strength through a micromechanically motivated model based upon fracture mechanics. 

Other aspects of particular importance are the effects of edge finishing (seamed, polished or clean cut) and of 

surface treatments (enameling, serigraphy, coating). A peculiar phenomenon in glass is that the application 

of long term loading may produce its rupture at stress levels far below the static strength under short-duration 

actions. For such a phenomenon, usually referred to as static fatigue, reference must be made to a model of 

the static propagation of an equivalent dominant crack, which evolves in time according to a power-law 

dependence of the crack tip velocity upon the stress intensity factor. All the issues must be considered here 

from a statistical point of view. Glass strength will be interpreted through a probabilistic distribution à là 

Weibull, obtained from a previous, extended, experimental campaign [Dall’Igna et al., 2010]. The results of 

this study furnish the basis for the design of glass structures according to the general concepts established in 

                                                      
1
 This draft standard was initially called prEN13474 [CEN-TC129-WG8, 2012], but although being under 

inquiry for more than ten years, it was never approved. Because of this, the proponents were forced to 

withdraw it. After having changed its name to prEN 16612, the procedure of public inquiry has started again.  
2
 Approved by the European Parliament on March 9

th
 2011. 
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EN 1990 [CEN-TC250a, 2005], and will be probably adopted in the forthcoming Italian recommendations 

CNR-DT210 [CNR, 2013].  

The plan of the article is as follows. In section 2, general concepts for the probabilistic approach to the 

mechanical resistance and stability are briefly recalled, emphasizing the peculiarities of glass. The 

probabilistic model of glass resistance that has been used in the calculations is described in detail in Section 

3. The procedure for the calibration of the safety factor for annealed glass structures is described in Section 4 

and achieved in Section 5, through consideration with a full probabilistic approach of level III of 

paradigmatic case studies. Of course, the work is far from being exhaustive. Other important problems, such 

as the statistical characterization of the strength of pre-stressed glass (heat and/or chemically tempered), or 

the influence of edge finishing on glass strength, could not be dealt with now because the experimental data 

are still missing. The open issues, with concluding remarks, are summarized in the final Section. 

2 Probabilistic approach to stability of glass structures  
 

In any kind of structural work, a certain level of stability and safety against failure is required. Such a level is 

assessed on a statistical basis, defining the probability of collapse that is reputed acceptable as a function of 

the consequences of the collapse itself and the nominal lifetime of the construction. Such an approach is well 

codified in European regulation EN 1990 [CEN-TC250, 2005a], but it must be detailed and extended to the 

specific case of cases of glass structures, which present noteworthy peculiarities. 

2.1 Classes of consequences and probability of failure for glass structural elements 
 
EN 1990 defines three classes, referred to as CC1 and CC2 and CC3, according to the potential 

consequences of the failure of a structure in economic, social, and environmental terms, including loss of 

human life. Each class is moreover associated with different categories of constructions based on their 

importance: for example, CC1 refers to agricultural buildings, CC2 to residential and office buildings, CC3 

to grandstands and open buildings. Such classification, however, considers the structure in its entirety, i.e., 

collapse implies loss of the entire construction. 

Indeed, because of their cost, elements made of glass are widely used in valuable public buildings. On the 

other hand, glass structures often represent localized parts of the construction (façades, beams, parapets, 

staircases, etc.): their failure can certainly have very serious consequences, though hardly ever accompanied 

by collapse of the entire buildings. Their classification ought therefore to be based on the severity of the 

potential consequences due to localized failure of the element in question, without having necessarily to 

extend the higher consequence classes to all the glass elements making up the construction. If this was not 

done, the class CC1 could never be used because glass is hardly employed in agricultural buildings; but 

upgrading all the glass elements to the higher classes would be uneconomical because there might be 

elements (the paradigm is window panels), whose collapse has a low risk of loss of human life and modest or 

negligible economic, social and environmental consequences. 

A possible classification, which will be probably adopted by a recent proposal of Italian recommendations 

[CNR, 2013], is represented in Table 1, which for the sake of completeness includes, apart from the three 

classes set forth in EN 1990, also a class CC0, which refers to all strictly non-structural elements. The 

assessment of the safety level for class CC0, which includes for example standard window glass panes, can 

be obtained on the basis of specific tests and practical design rules, but does not require in general a specific 

structural design likewise the elements that fall within the higher classes. 
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Table 1. Proposal of classes of consequences for glass elements, according to their specific importance. 

Class Definition 

CC0 Specifically non-structural elements. Following failure, negligible economic, social and environmental 

consequences and practically null risk of loss of human life. 

CC1 Following failure, low risk of loss of human life and modest or negligible economic, social and 

environmental consequences. Glass structural elements whose failure involves scarce consequences fall 

into to this category. 

CC2 Following failure, moderate risk of loss of human life, considerable economic, social and 

environmental consequences. Glass structural elements whose failure involves medium-level 

consequences belong to this category. 

CC3 High risk of loss of human life, serious economic, social and environmental consequences: for instance, 

the structures of public buildings, stages and covered galleries, where the consequences of failure can 

be catastrophic (concert halls, crowded commercial centers, etc.). Glass structural elements whose 

failure involves high-level consequences fall into this category. 

 

 

Glass structural elements can thus be divided into the following classes:  

Class zero: elements with no structural function, with a consequence class CC0; 

First class: elements with a consequence class CC1; 

Second class: elements with a consequence class CC2; 

Third class: elements with a consequence class CC3. 

 

Each class of structural element can generally be assigned a decreasing probability of collapse, from the zero 

class to the third class, as they correspond to ever-more significant and serious consequences as a function of 

the design lifetime of the structure in question. The design or nominal lifetime of a structure or a structural 

element in general refers to the period during which the structure is assumed suitable for use, with 

programmed maintenance, but without the need for substantial repair operations. The reference values of 

design lifetime for various types of civil constructions are recorded in  EN 1990 [CEN-TC250, 2005a]. Once 

the construction’s category, and hence the design lifetime is established, it is possible to assign for each class 

of glass structural element the corresponding probabilities of collapse, which for the first, second and third 

classes are assumed to be equal to those indicated in the EN 1990 standard as recorded in Table 2.  

 

Table 2. Probability of collapse as a function of the different structural element classes. 

Class Probability of collapse 

Zero probability of collapse to be evaluated in consideration of costs of maintenance and repair 

First 4.83·x 10
-4 

over 50 years; 1.335·10
-5

 in 1 year. 

Second 7.235·x 10
-5

 over 50 years; 1.301·10
-6

 in 1 year. 

Third 8.54·x 10
-6

 over 50 years; 9.960 ·10
-8

 in 1 year 

 

As regards class zero, the probability of collapse should be decided on the basis of experience, also bearing 

in mind the costs associated with possible replacement. In any case, its evaluation should not be within the 

tasks of a structural code. 

2.2 Probabilistic procedures for safety level evaluation 
 
In the semi-probabilistic method, classified as the level I method in EN 1990, partial amplifying  factors for 

the actions and partial reduction factors for the strengths are used, so to conduct the safety check through 

direct comparison of weighted stresses and strength values. For its proper use, partial safety factors must be 

calibrated in such a way that in a probabilistic view of safety, such comparison is indicative of the 

performance levels required for the construction in terms of the probability of failure.  
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As a rule, the numerical values for the partial safety factors for the material checks can be determined in one 

of the two following ways: performing calibration a) based on experience and building traditions or b) based 

on statistical evaluation of the experimental data and field observations. Here we will use approach b), 

implemented within a micromechanically-motivated model for evaluation of structural reliability. The partial 

safety factors of the different materials will be calibrated in such a way that the reliability levels of 

representative structures are as near as possible to the preset reliability index.  

In the calibration procedure, full probabilistic methods, also called Level III methods, will be employed. 

These should be preferred to methods of level II [Madsen et al., 1985], because the latters have been proved 

to provide reliable results for most structural applications with traditional materials (steel, concrete, wood), 

but their use for the specific case of glass is yet to be verified. In fact, glass is certainly an innovative 

material from the structural standpoint, also considering that the random variable associated to its resistance 

value follows a Weibull probability density law for which level II methods, calibrated via the statistical 

distributions of traditional materials, appear less reliable. Level III methods are instead more thorough, in 

that they involve direct evaluation of the probability of failure based upon the statistical distributions of the 

actions acting on the construction and the strengths of the materials.  

In the probabilistic approach, the measure of reliability must be equated with the probability of survival Ps = 

(1  Pf), where Pf is the probability of failure for the considered collapse mode or limit state, calculated for a 

certain reference period. If the calculated probability of failure is greater than a preset objective value, then 

the structure is to be considered unsafe. 

Denoting by S a synthetic symbol indicating the domain of the acting forces, let fS(s) indicate the probability 

distribution law of the values s  S. By analogy, denoting with R the resistance domain, let fR(r) be the 

probability distribution law for r  R. The performance function G(R,S) identifies the safe zone of the plane 

(R, S) as G > 0, and the zone corresponding to failure as G < 0. The probability of failure Pf can therefore be 

determined, based on the probability distribution laws of r  R and s  S, as the probability of occurrence 

of the condition G(R,S)  0, or in summary form, Pf = P[G(R,S)  0]. For cases in which R and S are 

independent variables, G(R,S) = R  S and we obtain the expression 

 0 ( ) ( ) .
s r

f R SP P R S f r f s dr ds
 

 
       

 (2.1) 
Moreover, in cases for which the resistance and force domains are made to coincide (through the use of a 

proper structural model), then r  s  x, x  X, and we obtain 

    0 ( ) ( ) ,f R SP P R S F x f x dx



      

 (2.2) 

where FR(x) represents the cumulative distribution function of the resistances.  

3 Probabilistic model of glass resistance 
 
Since the mechanical resistance of glass depends essentially on the presence of superficial cracks of random 

size and orientation, experimental data generally turn out to be broadly dispersed and require a statistical 

basis for interpretation, which must rely upon a micromechanically-motivated model.  

3.1 Subcritical crack growth 
 
Fracture of quasi-brittle materials is in general caused by propagation of one dominant crack in mode I, 

being negligible the contributions in mode II and mode III [Brückner-Foit et al., 1996]. In general, the most 

critical cracks are the superficial ones that, at least as a first order approximation, can be assumed to be 
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semielliptical. In this case, the stress intensity factor is given by 

IK Y c ,    

 (3.1) 

where  is the (macroscopic) component of stress normal to the crack plane, c is the length of the open axis 

of the ellipses and Y is a coefficient that takes into account the geometry of the crack (for a semicircular 

crack this is of the order of 0.71 [Murakami, 1987] ). The material strength in general depends upon the size 

of the largest (or critical) defect in a specimen, so that the study can be restricted to a dominant crack. If fc 

represents the measured (macroscopic) stress at collapse, acting at right angle to the dominant crack, the 

corresponding critical size of the crack is given by  
2

,IC
c

c

K
c

Yf
 

 (3.2) 

where KIC is the critical stress intensity factor that depends upon the material fracture toughness and, for 

ordinary float glass is of the order of KIC = 0.75 MPa m
1/2

  [Wiederhorn, 1969]. 

A noteworthy peculiarity of glass is that in general cracks progress in time when their size is well below the 

critical limit cc. Such a phenomenon of subcritical crack growth is usually referred to a static fatigue. It is 

reasonable to assume that the speed of subcritical crack growth is a function of the stress intensity factor. For 

the case of brittle materials and for glass in particular, similarly to cyclic fatigue [Choi et. al., 2006] it is 

customary to assume a power law of the type [Evans, 1972] 

0 0 ,

nn

I

IC IC

K Y cdc
v v

dt K K
 

 (3.3) 

where v0 and n are material parameters that depend upon the type of glass. For soda-lime glass v0 varies 

between 30 m/s in dry air to 0.02 mm/s in water, but in general it is assumed v0 = 0.0025 mm/s  in any 

condition [Porter & Houlsby, 1999]. The exponent n varies between 12 and 16 according to the hygrometric 

conditions, but it can be prudentially assumed n = 16 for 100% humidity (for borosilicate glass n = 27 40). 

Of course, expression (3.3) is representative of an intermediate asymptotic phase when K0 < KI < KIC, i.e., KI 

is higher than an activation threshold K0 but lower than the critical value KIC, in proximity of which the 

power law (3.3) is not experimentally verified. However, one can remain on the side of safeness by 

neglecting the threshold K0; moreover, the critical stage of crack growth (KI  KIC) is so rapid that (3.3) is 

usually assumed to be valid also when 0 < KI  KIC. In a load history defined by  =  (t), integration 

between the origin t = 0, when the crack length c is initially ci, and the collapse stage t = tf, when c = cc, gives 

2
0

0

.

fc

i

t nc
n

IC
c

t Y
c dc v dt

K
 

 (3.4) 

In general, experiments are controlled at constant stress rate, i.e., ( )t t  with  constant. Therefore, 

denoting with ftest the tensile strength measured at the end of the stress-driven test, integrating (3.4) and 

recalling (3.2) for fc = ftest and that test ff t , being tf the time of rupture, one finds  

2 2
-21 12- 2-

0 02 2
.

2 1 2 1

nn nn nn n

test testtest
i

IC IC IC

f fv Yf vn Y n Y
c

n K K n K
 

 (3.5) 
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The approximation is due to the fact that, as it can be verified a posteriori, the second term inside the square 

parentheses is negligible with respect to the first one. The quantity ci results to be an intrinsic material 

parameter, representative of the defects that are initially present in the material. Such a parameter 

characterizes, through the proposed modeling, not only the macroscopic strength of the material, but also its 

attitude to the phenomenon of static fatigue. 

Observe in passing that the most noteworthy consequence of (3.5) is that, since ci is a material parameter, the 

quantity 
1( ) /n

testf    is a constant. We will thus make the position 

1( )n

testf
R






, 

 (3.6) 

where the constant R may be measured from experimental tests, and for soda-lime float glass may be 

assumed of the order of 7.2 10
22

 MPa
n
·s. 

Such finding furnishes the rescaling for the measured strength [Collini & Royer-Carfagni, 2013] when tests 

are performed at different load speed, and it is the basis for the experimental assessment of the coefficient n, 

as also indicated in ASTM C1368 [ASTM, 2001].  

 

3.2 Load duration and the coefficient kmod 
 
In the design practice, actions are usually schematized by loads assumed to remain constant for a 

characteristic time, representative of their cumulative effect during the construction life-time. Referring to 

(3.1), let us suppose that the load produces a (macroscopic) stress  = L at the crack tip in the characteristic 

interval 0  t  tL, being t = tL the time when failure occurs. Denoting with ccL the corresponding critical 

crack size, then (3.4) becomes 

2
0

0

.

cL L

i

c t n
n

L

IC
c

Y
c dc v dt

K
 

 (3.7) 

After integration, one obtains 

2
2 2

2

0

2
1

2

.

n
n

i
i

cL
n

L L n

IC

c
c

n c

t
Y

v
K

 

 (3.8) 

Since in general ci << ccL, as it can be verified a-posteriori, recalling expression (3.5) and the definition of R 

from (3.6), this expression can be simplified in the form 
2

2

0

2
12 .

1

n

i
n

L L n

IC

c
nt R

nY
v

K

 

 (3.9) 

From this, one can predict the stress L that produces failure in a time tL, i.e., 
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1/1/
1

.
1

nn

L
L

t

n R
 

 (3.10) 

A practical way to consider this effect is through the coefficient kmod, defined as  

1/1/

mod

1 1

1

nn

L L

ref ref

t
k

f f n R
 

 (3.11) 

where fref is a reference value for the failure stress. In general, it is customary to assume fref to be the bending 

strength in a text at constant load rate ref = 2MPa/s. Since clearly 
1( )n

ref reff R , one obtains 

1/ 11 1

1( 1)
mod

1
.

1

n

nn n n
ref Lk R t

n
 

 (3.12) 

For float glass, setting n = 16 and assuming characteristic values for the other parameters, one obtains 

kmod = 0.9759 (tL)
1/16

, where tL is measured in seconds. Observe that this expression is slightly different from 

that recorded in prEN 16612 [CEN-TC129-WG8, 2013], but since no motivation, either experimental or 

theoretical, is contained in that document, in the following (3.12) will be used. In any case, the difference 

with the expression of prEN 16612 is minimal. 

 
3.3 Statistical distribution of defects 
 

A two-dimensional solid (i.e., a plate), with mid-surface area A, can be considered to be composed of a large 

number of elements of area dA, each of which is characterized by internal defects of a certain size. Failure 

due to the application of external loads occurs when any element of area dA fails (weakest link model). The 

probability of an element’s failure is therefore linked to the probability that that particular element be called 

upon to contain a critical defect.  

By likening any defects existing on the surface to cracks orthogonal to the surface itself, it is convenient to 

define the tensile resistance of the glass, not in reference to the stress intensity factor, but rather to the mean 

stress calculable in a hypothetical defect-free element. It can thus be assumed that the fracture propagates 

when the stress component normal to the plane of the crack exceeds the critical value σIc, which represents 

the mean maximum uniaxial stress in an element with one crack along the direction orthogonal to the stress 

axis (mode I) in the absence of static fatigue. In general, the size, density and orientation of cracks on the 

surface of a solid can be evaluated through probabilistic laws. According to the Weibull formulation, the 

mean number of cracks in a unit area with mechanical resistance below σIc can be expressed in the form 

[Evans, 1978; Batdorf & Heinisch,1978; Chao & Shetty, 1990] 

0

( )

m

Ic
IcN

 
   

 
 

 (3.13) 

where the parameters here generically indicated with m (modulus) and 0 (reference resistance) depend on 

the material fracture toughness and the statistical distribution of the surface crack size. An high value of m 

indicates a low dispersion of the mechanical resistances, corresponding to a homogeneous defectiveness of 

the test specimen. For m → ∞ the range of resistance has amplitude tending to 0, and all the elements have 

the same mechanical resistance. 
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3.4 Statistical effects of stress state and specimen size  
 
Since the leading crack opening mechanism is in mode I, the probability that the maximum principal tensile 

stress is at right angle to the crack plane is higher when the state of stress is biaxial rather than uniaxial 

[Brückner-Foit et al., 1996]. Moreover, the probability of failure also depends upon the size of the area that 

is subjected to tensile stress. Assuming that defects are uniformly distributed (all directions have the same 

probability of having a dominant crack), for a plane state of stress the failure probability can be assumed of 

the form [Munz & Fett, 1999] 

00

1
1 exp

m

A

P d dA , 

 (3.14) 

where is the normal component of stress in the direction of the angle  and 0 is a parameter having the 

dimension of a stress times unit-area to the 1/m exponent (MPa mm
2/m

). If 1 and 2 (1 > 2 > 0) are the 

principal component of stress, making the direction  = 0 coincide with the principal direction 1 of maximal 

tensile stress, introducing the variable r = 2/1, expression (3.14) can be written in the form  

2 21

0 0

1
1 exp cos  sin   

m
m

A

P r d dA . 

 (3.15) 

Following [Munz & Fett, 1999], one can thus introduce the correction factor for the state of stress  
1

2

2 2

0

2
cos sin

m
m

C r d  

 (3.16) 

and write (3.14) in the form 

max1

0 0

1 exp 1 exp ,

m m

A

C
P dA kA  

 (3.17) 

where max denotes the maximum tensile stress in the loaded area, and we have introduced the quantity kA 

(k < 1), referred to as the effective area, defined as  

max 1 .
m m

A

kA C dA  

 (3.18) 

In order to compare different-in-type experimental results, it is necessary to assume a reference test condition 

and to rescale all the data with respect to this. It is customary to assume, as the reference, the distribution 

corresponding to an ideal equi-biaxial stress distribution acting on the unitary area UA =1 m
2
, i.e., 1 = 2 = 

eqb,UA. For this case, C =1 in (3.18), so that (3.17) reads 

,

0

1 exp

m

eqb UA

eqbiaxP UA . 

 (3.19) 

The probability of failure at the stress max given by (3.17) is equal to the probability of failure at the stress 
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eqb,UA given by (3.19) provided that 

1/

, max , max

m
m m

eqb UA eqb UA

kA
UA kA

UA  
 (3.20) 

In words, this expression allows to rescale the experimental values to a common denominator represented by 

the ideal equi-biaxial stress distribution on the unitary area. 

 

3.5 Statistical effect of load duration 
 
Because of the phenomenon of static fatigue referred to in Section 3.2, it can be of interest to define the re-

scaling of the probability distribution (3.19) when, instead of rupture under standard test conditions, one is 

interest in rupture occurring in the characteristic time tL, defined by the duration of the applied action. Let mL 

and 0L represent the Weibull parameters associated with the corresponding probabilistic distribution, which 

will have an expression identical to (3.19) with the substitution m  mL and 0  0L, i.e., 

, ,

,

0

1 exp

Lm

eqb UA L

eqbiax L

L

P UA . 

 (3.21) 

 The failure probability is the same provided that  

      
, , ,

0 0

.

Lm m

eq UA eq UA L

L

    
   

    
 

 (3.22) 

But with a procedure analogous to that leading to (3.9) one has  
1

,

, ,

( )1
( ) .

1

n

eq UAn

eq UA L Lt
n

 

 (3.23) 

 
Inserting (3.23) into (3.22), we obtain 

( 1)
,

,

0 0

1 1
( ) ,

( ) ( 1)

L

L

L

m
m m n n

eq UA n
eq UA m

L Ln t

   
    

     
 

 (3.24) 

      
whence it follows that  

    
0 0

( 1) 1 1 1
, .

( 1)

L

L

m

n
L

mm

L L

m n
m

n n t

 
   

    
 

 (3.25) 

  
From this we can derive 

  

1 1
1

0 0 0

1 1
, ,

1 ( 1) ( 1)
L

m nn n
m n

L L

L L

n
m m

n n t n t

   
        

       
 

 (3.26) 

which enables converting the statistical distributions of the standard test and to the statistical distributions for 
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a constant load applied for a fixed time period. 

 

3.6 Experimental data 
 
In general, the strength of glass is defined based on standardized tests according to EN 1288, under precise 

temperature and humidity conditions [T = 23°C, RH = 55%] and at constant loading rate [ 2MPa / s  ]. 

An extensive experimental campaign aiming at the statistical characterization of glass strength was 

conducted in Italy by Stazione Sperimentale del Vetro, and the relevant results recorded in [Dall’Igna et al., 

2010]. The tests were Four-Point-Bending (FPB) tests according EN 1288-3 [CEN-TC129, 2000b] and 

Concentring Double Ring (CDR) tests according to EN 1288-2 [CEN-TC129, 2000a].  

The second type of tests [CEN-TC129, 2000a] aims at achieving a perfectly equibiaxial state of stress in the 

specimen also by imposing an overpressure on the specimen surface. Since this technique is quite 

complicated, the procedure was slightly modified, avoiding to add the overpressure but exactly calculating 

the state of stress (close to, but not exactly, equibiaxial) and correcting the experimental data by calculating 

the correction factor C from (3.16) and the effective area kA from (3.18). For this procedure, more details can 

be found in [Dall’Igna et al., 2010]. Results from all the experiments were then rescaled according to (3.20) 

in order to refer them all to the ideal case of the equibiaxial state of stress acting on the unit area.  

A noteworthy result of the aforementioned experimental campaign was that there is a substantial difference 

between the results that are obtained when it is the tin-side, or the air-side, surface that undergoes the tensile 

stress. Recall that during the float production process, one side of the floating glass paste is directly in 

contact with the molten tin bath (tin surface), whereas the other surface is directly exposed to air (air 

surface). This is why, in general, it is necessary to consider two distinct strength distributions for the two 

sides. This distinction influences the calibration of the partial safety factors, as it will be shown later on. 

In conclusion, the probabilistic model that will be used to interpret the strength of float glass is interpreted by 

a distribution à là Weibull as per (3.19), where the parameters m and 0, from the experimental results of  

[Dall’Igna et al., 2010], are summarized in Table 3.  

 

Table 3. Weibull parameters of the surface of annealed float glass plates of thickness 6 mm obtained from 

experimental tests. Mechanical resistance data referred to a unit surface (UA = 1 m
2
). 

stressed surface m 0 

[MPa mm
2/m

] 

Tin 7.3 406 

Air 5.4 1096 

 

Recall that such Weibull parameters are associated with the ideal reference test for a unitary area subjected to 

an equibiaxial state of stress and correspond to the case of tests at standard load rate 2 MPa/s  . 

However, in general the design actions (permanent loads, wind, snow) act for the whole structure lifetime, so 

that phenomena of static fatigue become of importance. We may assume that the characteristic load of each 

action is constantly applied for an effective characteristic time, which represents the time in which the action 

under consideration produces in the structure lifetime the same damage if it was constant and equal to its 

characteristic value. In other words, the characteristic time t is equivalent to the integral of the spectrum. 

Reference value for the effective characteristic load duration are given in table Table 4. 
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Table 4. Nominal values of the effective characteristic load duration. 

Action 

Load spectrum 
Time t equivalent to the 
integral of the spectrum 

Characteristic 
reference value 

Nature 

Wind 

mean over 3 sec.  
Maximum peak 
pressure 

3/5 sec 

Mean over 10 min. 
Peaks of pressure 
repeated 

15 min.  

Snow Yearly maximum  3 months 

Live service load 
(maintenance) 

Brief Single peak of load 30s 

Crowd loading Brief Single peak of load 30 s 

Crowd loading Yearly maximum Repeated loads 12 hours 

Daily temperature 
variation  

Maximum daily 
difference 

Duration of the 
maximum peak 

11 hours 

Permanent actions 

Self-weight and other 
dead loads 

Permanent 
Load Invariable over 
time 

Nominal lifetime 

 

Therefore, while evaluating the probability of collapse, one should consider the Weibull distribution of glass 

strength corresponding to load constantly acting for their characteristic duration. The corresponding Weibull 

parameters mL and 0L, can be found from the characteristic load duration of Table 3 according to the 

rescaling indicated by (3.26). On the other hand, the characteristic value of glass strength needs to be 

modified with the coefficient kmod that, as illustrated in Section 3.2, can be evaluated through the expression 

(3.12). 

4 Safety factors for annealed glass structures 
 
The procedures are now described for the calibration of partial safety factors, by comparing the results 

obtainable with methods of Level III and Level I in some paradigmatic cases. A new method is also proposed 

for the specialization of the verifications to elements belonging to the various classes of consequences 

described in Section 2.1, which is based on the introduction of the coefficient RM. Since in general the 

greatest majority by far of glass elements can be thought of falling in either first or second class, the 

calibration will be detailed for these categories only. In general, glass elements falling in third class represent 

such exceptional structures that, for their design, specific considerations and full probabilistic approaches are 

envisaged. This is why the calibration will not be detailed for structures falling in the third class, although 

the result could be directly achieved using the same procedure hereafter detailed.  

4.1 Calibration procedure for safety factors 
 
With reference to a glass plate under a certain combination of actions, described by probabilistic models, 

once the statistical distribution of the actions is given, it is possible to calculate the cumulative probability of 

the maximum stress in the element. To this end, let us indicate by . , ( )pr tF x  the probability that the 

maximum stress in the plate due to that action, with characteristic duration t, be below the value x in the 

reference time, assumed here to be one year. 

The probability density function of the stresses f,pr,t can clearly be obtained by derivation with respect to x, 

that is 
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     . , . ,( ) ( )pr t pr t

d
f x F x

dx
   . 

 (4.1) 

With regard to the resistance of the glass, in order to determine parameter k in (3.18) that calibrates the area 

A of the plate under study in order to define the effective area Aeff = k A, the representative domain of the 

glass surface subjected to tensions is divided into N idealized elementary areas. Then the mean value of the 

principal stress components 1,i and 2,i and the ratio ri = 1,i/ 2,i is considered for the i-th element, i = 1,.., 

N, and coefficient C = Ci thus calculated via (3.16) by placing r = ri. Denoting Ai as the area of the i-th 

element of the division, from (3.17) the probability of the plate’s failing under the given load condition can 

be approximated via the expression 

1,

1 0

1 exp ,

m
N

i i

i

i

C
P A



  
     

   
  

 (4.2) 

and consequently the counterpart of (3.18) reads 

 

 

1,

1

max

.

N
m

i i i

i

m

C A

k
A



 





 

 (4.3) 

   

The value of k therefore depends in general on the coefficient m, but not on 0. 

It has been outlined in Section 3.6 that the “tin” and “air” faces of glass plies are characterized by different in 

type Weibull distributions. Since the glass arrangement is wholly random, the tin side and the air side have 

the same probability of being the face subjected to the maximum tensile stresses. To account for the equal 

probability of these two incompatible events, the probability function to be considered is the arithmetic 

average of the probability functions (4.2) calculated for the two surfaces. These probability functions have 

the parameter values 0L and m that, beginning with the data in Table 3, are calculated from (3.26) by setting 

tL = t, i.e., the characteristic duration time of action as indicated in Table 4. We therefore indicate with  

 

. .

( )/2

. .

0 . 0 .

1
( ) 1 exp exp

2

L air L tinm m

air tin

A t air tin

L air L tin

x x
F x k A k A



        
           

            

, 

 (4.4) 

the cumulative probability of the plate undergoing failure due to maximum stresses below the value x in the 

reference time period, assumed here to be one year. 

The probability of plate collapse in one year of life is obtained through the convolution integral 

( )/2

,1 . . , ,( ) ( )air tin

f y A t pr tP F x f x dx




 


    

 (4.5) 

To obtain in this expression the rated value defined in Section 2.1 for elements in the various classes of 

consequences, the characteristic parameters that define the action (e.g. the characteristic wind pressure value) 

are made to vary until the desired value is obtained. 

At this point, we move on to plate design via level I methods. The characteristic values of the actions that 

produce the target probability of collapse, multiplied by suitable partial coefficients Q, are used as 

deterministic values for calculating the maximum stress max,d,t in the glass.  

Regarding the characteristic resistance of the glass, the value for comparison is represented by fg,k, referring 

to the characteristic resistance obtained in equi-biaxial double ring tests with overpressure according to EN 
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1288-2 [CEN-TC129, 2000a], whence Atest = 0.24 m
2
, ktest = 1 and Aeff.test = 0.24m

2
. It is unanimously 

assumed fg,k = 45 MPa for float glass. 

 

4.2 The RM coefficient 

 

In general, partial safety factors are calibrated to achieve a probability of failure associated to the second 

class, as recalled in Table 2. In order to pass from verifications from the second class to the first class, the 

EN 1990 [CEN TC250, 2005a] prescribes to reduce the partial coefficient of the actions through the 

coefficient KFI  < 1. For statistical distributions of the Gaussian type, Section B3.3 of EN 1990 suggests to 

use KFI = 0.9. However, the case of glass is substantially different
3
 because the probabilistic distribution of 

strength is of the Weibull type. Moreover, since glass is extremely brittle and its distribution of strength quite 

dispersed, even a small increase of the accepted probability of collapse would provide a substantial decrease 

of the coefficient KFI. The forthcoming calculations indicate that this should be of the order of KFI = 0.7.  

From a physical point of view, to define new probability scenarios, it is not the action that should be 

rescaled, by the resistance of the material. In fact, the action is what it is, whereas the probability of collapse 

is strongly influenced by the material strength. If the structural response was linear, there is no difference in 

rescaling the action of the resistance. But since glass structures are quite slender, second order effects are 

very important: if the action was reduced through a coefficient KFI of the order of 0.7, second order effect 

might be underestimated. 

This is why, the proposed method for verifications in various classes is based upon a rescaling of the material 

strength, according to an expression of the type 

  g

Q

M M

f
S Q

R
 


, 

 (4.6) 

where S(QQ) indicates the stress induced by the action Q multiplied by the corresponding partial safety 

factor Q, while fg is generically representative of glass strength and M is the material partial safety factor. 

The quantity RM is a new parameter that takes into account, from a probabilistic point of view, the passage 

from verifications in various classes. Since in general the factors M will be calibrated for verifications in 

second class, we will set RM = 1 for this case, whereas RM < 1 characterizes verifications in first class. 

 

4.3 Relationship with methods of level I 
 

More specifically, the verification according to methods of level I will be performed according to an 

expression of the type 
( )/2

mod, test ,

max, , ,

air tin

t gA kA g k

d t

M M

k f

R




 


 

 (4.7) 

where max,d,t represents the stress associated with the considered action of characteristic duration time t, 

while kmod,t suitably reduces the tensile resistance of the glass to account for the phenomenon of static fatigue 

as defined in (3.12). For what the characteristic resistance value of the glass fg,k is concerned, as already 

                                                      
3
 Although the method proposed by Section B3.3 of EN 1990 cannot be transferred to glass for the reasons 

here discussed, it should be mentioned that, quite surprisingly, the project standard PrEN 16612 [CEN-

TC129-WG8, 2013], ex PrEN13474 [CEN-TC129-WG8, 2012], prescribes the use of this method. The 

proposed procedure, however, is not corroborated by any scientific reference.  
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mentioned this is conventionally assumed equal to the nominal value 45 MPa, corresponding to the value of 

the standardized tests producing an equi-biaxial state of stress on an area Atest = 0.24 m
2
 with speed 2 

MPa/s, according to EN 1288-2 [CEN TC129, 2000a]. 

The coefficient 
( )/2

test

air tin

gA kA



  enables calibrating the characteristic resistance value, obtained according to EN 

1288-2 tests on an area Atest = 0.24 m
2
, in comparison to the effective area Aeff = kA of the case study 

according to (3.20). Assuming (4.4), i.e., the equal probability of fracture on different stress fields acting on 

the area of the case study and on the test area (under equi-biaxial conditions), the rescaling (3.26) to account 

for the characteristic duration of applied load furnishes expressions in (4.4) of the form 

 

. .

. .

max. max.

0 . 0 .

max. max.

0 . 0 .

exp exp

exp 1 exp 1 .

L air L tin

L air L stagno

m m

A A
air tin

L air L tin

m m

test test
test test

L air L tin

k A k A

A A

       
        

          

       
         

          

 

 (4.8) 

 We obtain the corresponding coefficients from the preceding expression by setting max.test = fg,k and 
( )/2

test , max.

air tin

gA kA g k Af

   . However, as the arguments of the exponential are small, if we go on to develop e
x
 = 

1 + x +o(x) in series, and neglect the terms of order beyond the first, such expression reduces to 

. . . .( )/2 ( )/2

, , , ,

0 . 0 . 0 . 0 .

L air L tin L air L tin
m m m mair tin air tin

gAtest kA g k gAtest kA g k g k g k

air tin test

L aria L tin L air L tin

f f f f
k A k A A

 

 
         
                         

. 

 (4.9) 

This expression, although rigorous, is however of little use in that it is not reversible analytically.  

An approximate expression can be obtained by separately evaluating the fracture probabilities of the air and 

tin surfaces, and evaluating the scale effects on the arithmetic average of the rescaled stresses. If the exposed 

surface subjected to tension was the air side or the tin side, from (3.20) we would respectively get 

. .

. .

1/ 1/

max. max, , ,

1/ 1/

max. max, , ,

,

.

L air L air

L tin L tin

m m

air airtest test
A Atest gAtest kA g k g k

air air

m m

tin tintest test
A Atest gAtest kA g k g k

tin tin

A A
f f

k A k A

A A
f f

k A k A





   
        

   

   
        

   

 

 (4.10) 

Then by setting  

( )/2 ( )/2

max. max. max. ,

1
: ( ) :

2

air tin air tin air tin

A A A gAtest kA g kf 

      , 

 (4.11) 

we obtain in conclusion 

1/ 1/

( )/2 test test
test

1

2

L air L tinm m

air tin

gA kA

air tin

A A

k A k A





    
      
     

 

 (4.12) 

In general, given the high value of the exponents mL.air and mL.tin, (4.9) and (4.12) lead to expressions only 

slightly different from each other. Indeed, as can be verified directly in the case studies presented in the 
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following, the difference between the values obtained through the two expressions is less than one 

percentage point. 

It lastly should be noted that, in strictly probabilistic terms, the value of fg,k to consider in (4.7) for calibrating 

the partial safety factor M should be the characteristic value of the in resistances associated to distribution 

(4.4). In design, the nominal value fg,k = 45 MPa is always used, so that it is preferable to refer to this value in 

calculations. 

Once factor M has been determined for elements in the second class by setting RM =1, we can thus proceed 

to analyze the case of first class elements. In this case, coefficient RM in expression (4.7) is the one that 

suitably reformulates the resistance values so that they correspond to different collapse probabilities. Using 

the value of M determined previously, the wanted coefficient RM is that which furnishes equality in (4.7) 

corresponding to the target collapse probability for elements in the first class. 

 

5 Case studies 
 

The procedure just described is now applied to some paradigmatic case studies. 

5.1 Plate under wind load 

 

Let us consider a monolithic glass plate of dimensions 1000  1000  6 mm
3
, simply supported at the edges, 

under wind pressure pw. Two checks are conducted with regard to this action for peak winds acting over 

different characteristic times of  3 seconds and 10 minutes, because due to the phenomenon of static fatigue, 

a lower pressure acting for a longer time may be more dangerous than a peak action. 

Using a numerical code, the stresses that develop in the plate have been evaluated both in the linear elastic 

range, and in the geometric non-linear regime, while maintaining constitutive linearity. Figure 1 shows the 

results obtained in terms of the maximum stresses attained at the center of the plate. It is evident that 

neglecting the non-linearity can lead to errors in the highest values of pw. For the case in question, best fitting 

the results with a second order polynomial reveals that the stress max [MPa] can be approximated as a 

function of pw [daN/m
2
] in the form 

5 2

max 6 10 0.0836 : ( ) .w w wp p S p       

 (5.1) 

  

 Linear analysis  Non linear analysis (geometric) 

Figure 1. Maximum stress at the plate center as a function of the wind pressure; a) linear elastic analysis; b) 

elastic analysis with geometric non-linearity. 

For meaningful values of pw (5.1) can easily be inverted to obtain the wind pressure that produces a certain 

maximum stress, yielding the relation pw = S
1

(max).  
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The probabilistic model of the wind action to use in the proposed procedure has been obtained by starting 

with the definitions and rules furnished in the Eurocode 1, EN 1991-1-4 [CEN TC250, 2005b], and also 

followed by the Italian Circolare Esplicativa alle Norme Tecniche per le Costruzioni [M.I.T., 2009].  

In particular, by means of the expression furnished at point C.3.3.2 of [M.I.T., 2009], once the reference 

velocity vb.50 (defined as the characteristic wind velocity value at 10 m above ground on an exposure 

category II field averaged over 10 minutes) has been determined for a return period of 50 years (assigned by 

regulations), it is possible to evaluate the reference velocity corresponding to a different return period TR via 

an expression of the following type 

    .50

1
, 0.75 1 0.2 ln ln 1b R R b R

R

v T v
T

  
         

  
. 

 (5.2) 

An analogous expression is set forth in point 4.2(2)P of EN 1991-1-4 [CEN TC250, 2005b], according to 

which the coefficient cprob, which when multiplied by reference velocity vb.50 furnishes the velocity value 

with an exceedance probability in any 1 year equal to p, can be evaluated through the expression 

  
  

1 ln ln 1
,

1 ln ln 0.98

n

prob

K p
c

K

    
  
    

 

 (5.3) 

where K is a shape coefficient that depends on the variation coefficient of the distribution of extreme values. 

Assigning to K and n the values recommended by the Eurocode, i.e., 0.2 and 0.5 respectively, and 

substituting probability p with the inverse of the return period value (p = 1/TR), yields the above expression 

(5.2) for the coefficient R. 

Since p is the probability of exceeding value vb in 1 year, the value (1  p) is the probability that such value 

not be exceeded in 1 year, which is precisely the sought for cumulative distribution function F(vb). In 

conclusion, from (5.2) it is possible to obtain the cumulative distribution function of vb, the maximum 

averaged wind velocity over 10 minutes recorded in one year, which is 

2

2 2

.50

1
( ) exp exp .

0.2 0.2 0.75
b

b

b

v
F v

v

  
    

    
 

 (5.4) 

For what the wind pressure is concerned, both EN 1991 [CEN TC250, 2005b] and [M.I.T., 2009] allow to 

distinguish the peak pressure corresponding to the averaged over time t = 10 min or t = 3 s through 

expression of the type  

2 2

,10min 1 ,3s

1 1
( ) , ( )

2 2
w b e p d w b e p dp v c z c c p v c z c c    . 

 (5.5) 

In these formulas  = 1.25 kg/m
3
 is the air density, cp and cd are the pressure coefficient and the dynamic 

factor [M.I.T., 2009], respectively, z is the height above ground, whereas ce1(z) and ce(z) are the exposure 

factors. The latters are of the form 
2

2 2

1 min min

0

( ) ln , with for ,e r t

z
c z k c z z z z

z

  
       

  
 

 (5.6) 
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2

min min

0 0

( ) ( ) ln ln ( ) 7 , with for ,e r t t

z z
c z k c z c z z z z z

z z

    
        

    
 

 (5.7) 

  
where z0 and zmin are reference heights, kr is a coefficient that depends on the field exposure category where 

the construction is located, and ct(z) is the orographic coefficient. Relation (5.4) is a Gumbel distribution 

function. 

Therefore, in terms of the wind pressure pw,t  averaged over time t (t = 3 s or t = 10 min), by substituting for 

vb in (5.4), we obtain 

  ,

, 2 2
, .50

21
exp exp ,

0.2 0.2 0.75

w t

w t

e t p d b

p
F p

c c c v

  
    

     

 

 (5.8) 

being 

 ,

1

for 3s ,

for 10min .

e

e t

e

c t
c

c t


 


 

 (5.9) 

Now substituting pw = S
1

(max) into expression (5.8) yields the cumulative distribution function of the 

maximum stress in the plate consequent to the maximum annual wind pressure, calculated as the mean over 

the characteristic time interval t. This turns out to be expressed as 

1

, , 2 2

, .50

1 2 ( )
( ) exp exp ,

0.2 0.2 0.75
pr t

e t p d b

S x
F x

c c c v





  
        

 

 (5.10) 

where x (in MPa) represents the actual maximum stress value, while S
1

(x) is the function introduced above, 

which furnishes the wind pressure in daN/m
2
 that produces the maximum stress x in MPa. The stress 

probability function, f,pr,t is obviously obtained by deriving (5.10) with respect to x, which yields 
1 1

1

, , , , 2 2 2 2

, .50 , .50

1 2 ( ) 2 ( )
( ) ( ) exp ( ) .

0.2 0.2 0.75 0.2 0.75
pr t pr t

e t p d b e t p d b

S x S x d
f x F x S x

c c c v c c c v dx

 


 

 
      

 

 (5.11) 

For the Weibull distribution of the resistances, we refer to (3.21), in which expression the Weibull 

parameters to be considered are the values mL and 0Lthat defines the probability of breaking occurring in 

characteristic time t. Such parameters can be determined from (3.26) as a function of the Weibull parameters 

m and 0. Table 5 shows such values in terms of unit area obtained by applying (3.26) to the data of Table 3.  

 
Table 5. Weibull Parameters for the test conditions and breakage in characteristic times t, reported in terms 

of unit area. 

Weibull Parameters mL 0L [MPa mm
2/mL]

Test 

CDR-UA 

Tin 7.3 406 

Air 5.4 1096 

t = 3 s 

CDR-UA 

Tin 6.9 425 

Air  5.1 1220 
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t = 10 min 

CDR-UA 

Tin 6.9 305 

Air 5.1 876 

 

In order to determine parameter k in (4.3), which rescales the plate area A to define the effective area, we 

hypothetically divide the representative square domain of the glass into N = 400 squares of dimensions 50  

50 mm, and for the i-th square consider the mean value of the principal stress components 1,i and 2,i and 

the ratio ri = 1,i /2,i . We thus calculate coefficient C = Ci defined by integral (3.16), by setting r = ri. With 

Ai the area of the i-th square of the division, coefficient k is calculated using (4.3). 

For the case under examination we obtain kair = 0.1764 and ktin = 0.138. To account for the equal probability 

that in general either side  air or tin side  be subjected to the greater stress, the probability function 

considered is the arithmetic average of the probability functions as described by (4.4). The probability of 

collapse of the plate in one year of life is furnished by (4.5). 

It should be noted that, in the case in question, the most meaningful contributions to the convolution integral 

(4.5) occur in correspondence to the tail of the cumulative distribution function of the resistances, in the 

interval defined by  the probability density function of the actions effects f,pr,t (Figure 2a). In this portion, 

magnified in Figure 2b, the cumulative distribution function of the resistances for the air side is greater than 

the corresponding function for tin side (there is a greater probability of obtaining very small resistance values 

on the air side than on the tin side). As already anticipated, this confirms that, although the air side is on 

average more resistant than the tin side, in probabilistic terms, the structural resistance of the latter is actually 

better than the former.  

 

  

(a) (b) 

Figure 2. a) probability density function of the actions’ effects and the cumulative distribution function of the 

resistances. b) Magnification of the significant portion, with indications of the cumulative resistance 

distribution function for the air side, the tin side and the average. 
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Setting in (5.10) and (5.11), without losing generality, vb.50 =30 m/s, cd = 1 and cp = 1.2, we choose height z 

of the construction so as to obtain, through the (5.5) and (5.6), the values of coefficients ce1 and ce, for which 

integral (4.5) furnishes probability Pf,1y equal to the objective values established in Table 2, that is Pf,1y = 

1.335·10
-5

 for first class elements, and Pf,1y = 1,301·10
-6

 for second class elements. Using these coefficient 

values, the design of the plate in question is optimal.  

At this point we proceed to the plate design via level I methods. The design wind pressure pw,d,t is obtained 

from (5.5) by setting vb = vb.50  [CNR, 2008], i.e.,   

2

,10min .50 1

1
( ) ( ) ,

2
w b e p dp z v c z c c      

 (5.12) 

for t= 10 min, and  

2

,3sec .50

1
( ) ( ) ,

2
w b e p dp z v c z c c      

 (5.13) 

for t = 3 s. 
The value of the maximum stress in the plate is obtained by inserting the design wind pressure into (5.1), 

properly multiplied by the coefficient of the actions Q, which thus yields max,d,t = S(Q pw,d,t). Setting RM = 1 

for second class checks, the material coefficient M is calculated in such way that yields equality in the 

following inequality 
( )/2

mod, ,

max, , , ,( ) ,

air tin

t gAtest A g k

d t Q w d t

M M

k f
S p

R




   


 

 (5.14) 

where Q = 1.5, fg,k = 45 MPa, the coefficient kmod,t is calculated from (3.12) as the function of the 

characteristic time t of load application.. Regarding the coefficient, 
( )/2

test

air tin

gA kA



 using the values in Table 5, 

from (4.12) we obtain for the case in examination the value 

1/ 1/
2 2

( )/2

test 2 2

1 0.24 m 0.24 m
1.07

2 0.176 1m 0.138 1m

L air L tinm m

air tin

gA A





    
       

      

 

 (5.15) 

for both t = 3 sec, and t = 10 min.  

For class 1 elements, the same expression is used, but in this case RM is the coefficient that, bearing in mind 

the statistical distribution of the actions and resistances, suitably reformulates the resistance values so as to 

correspond to different collapse probabilities. The value of the coefficient RM is thus calibrated in such a way 

as to yield in (5.14) an equality with the same value of M calculated for verifications in second class.  

The values obtained for the case at hand are summarized in Table 6. 

 
Table 6. Verifications and partial coefficients for a plate subjected to wind actions. 

n° Class 
Design 

wind 
Verification formula 

Function of 

performance 

probabilistic 

Pf,1y TR RM M 

1 2 
Qw,max 

(ce) 

( )/2

, test mod

max, ,3sec

( 0.91)

( 1)

air tin

g k gA A

d

M M

f k

R



 
 

 
 ( )/2

( ; ;3sec)

air tin

g CDA Aefff 
 1.3010

-6
 50 1 2.56 

2 2 
Qw,mean 

(ce1) 

( )/2

, mod

max, ,10min

( 0.65)

( 1)

air tin

g k gAtest A

d

M M

f k

R



 
 

 

 

( )/2

( ; ;10min)

air tin

g CDA Aefff 
 1.3010

-6
 50 1 2.50 
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3 1 
Qw,max 

(ce) 

( )/2

, test mod

max, ,3sec

( 0.90)air tin

g k gA A

d

M M

f k

R



 
 


 ( )/2

( ; ;3sec)

air tin

g CDA Aefff 
 1.3310

-5
 50 0.706 2.56 

4 1 
Qw,mean 

(ce1) 

( )/2

, test mod

max, ,10min

( 0.65)air tin

g k gA A

d

M M

f k

R



 
 



 

( )/2

( ; ;10min)

air tin

g CDA Aefff 
 1.3310

-5
 50 0.683 2.50 

 

In this regard, it should first of all be noted that the resulting value of RM is of the order of 0.7. We recall that, 

at point B3.3, EN 1990 prescribes using a reduction coefficient KFI for the actions equal to 0.9. Such a 

difference in the values is due to the fact that the value suggested by EN 1990 has been calibrated essentially 

on Gaussian type probabilistic resistance distributions, while the distribution of glass resistances is instead of 

the Weibull type, with very high data dispersion. Thus, even a small increase in the probability of collapse, 

may be associated with a considerable reduction in the design actions.  

It is important to emphasize that the partial safety factors here found for fist-class structures are not in 

contrast with those, based mainly on experience and construction traditions, suggested in version 2009 of 

PrEN 13474. However, PrEn13474 did not account for scale effects, while instead verification (5.14) 

contains the coefficient 
( )/2

test

air tin

gA kA



 , which is greater than one for this case.  

5.2 Roof under snow load 
 
The procedure is analogous to that illustrated in the foregoing. From the relation (determined via the finite 

element model) between the uniformly distributed load due to snow and the maximum tensile stress, it is 

possible to determine the distribution of the maximum stress on a plate under a snow load on the roofs. Then, 

from the convolution integral between the probability density function of the maximum tensile stress of the 

plate subjected to roof snow loads and the cumulative distribution function of the glass fracture resistance, it 

is possible to determine the probability of collapse of the plate. In the present case, an equivalent 

characteristic duration of the load is assumed to be 1 month. 

Let us consider a uniform plate, 1000  1000  6 mm
3
, of second class glass, with a corresponding target fail 

probability equal to 1.30110-6 in one year.  

The probabilistic model of snow actions used in the proposed procedure for calculating the partial safety 

factors for glass structures has been obtained by starting with the formula (D.1) for adjusting ground snow 

loads with varying return periods, as reported in Appendix D of EN 1991 1- 3 [CEN TC250, 2003], and valid 

under the hypothesis that the distribution of the annual maximum snow loads follows the Gumbel probability 

distribution function. Such expression is presented in the form 

  

 

6
1 ln ln 1 0.57722

,
1 2.5923

n

sn sk

V P
q q

V

 
       

  
 

  

  

 (5.16) 

where: qsk is the characteristic snow load value on the ground (with a 50 year return period); qsn is the snow 

load referred to a return period of n years (therefore according to the annual probability of exceedance, Pn); 

Pn is the annual probability of exceedance (approximately equivalent to 1/n, where n is the corresponding 

return interval (in years)); V is the variation coefficient of the series of maximum annual snow loads. 

As Pn is the annual probability of exceedance, then 1 Pn is the annual probability of non-exceedance and 

thus the ordinate of the cumulative distribution function for ground snow loads with a reference period of 1 

year. From expression (5.16), we obtain 1 Pn = F(qsn), which yields precisely the aforesaid cumulative 
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function in the form 

   exp exp 1 1 2.5923 0.57722 .
6snq

sk

x
F x V

q V

   
        

    


 

 (5.17) 

Such an expression depends on parameters qsk and V. The value of qsk is furnished by regulations as a 

function of the climate zone and the altitude above sea level (a.s.l.). The value of the variation coefficient is 

supposed to be provided by competent national authorities. EN 1991 1-3 provides a graph in which the 

variation coefficient is assumed to vary in the range of 0.2 to 0.6.  

Once ground snow loads have been established, it is possible to determine the snow loads on the roofs qs via 

the expression 

s i sk E tq q C C , 

 (5.18) 

where i is the roof shape coefficient; qsk is the characteristic reference value of ground snow loads for a 50-

year return period; CE is the exposure coefficient, which is a function of the specific orographic 

characteristics of the area where the construction is located; Ct is a thermal coefficient that accounts for the 

reduction in snow load due heat transfer from construction. The values of these coefficients can be drawn 

from national technical regulations [CEN-TC250, 2003]. 

Now, by substituting (5.18) into (5.17), we obtain the following expression for the distribution of snow loads 

on roofs 

   
1

exp exp 1 1 2.5923 0.57722
6snq

sk E t

x
F x V

q C C V

     
         

         

. 

 (5.19) 

In a first analysis, we fix the coefficient of variation of snow loads, defined in (5.16) as equal to V = 0.2, and 

then vary the height a.s.l. until the value of the failure probability pf obtained with the convolution integral is 

equal to the target value. Maintaining constant height, a deterministic design is then carried out by varying 

the material partial coefficient until equality is reached in the relationship  

 
( )/2

mod, ,

max, , , , ,

air tin

t gAtest A g k

d t Q s d t

M M

k f
q

R




  


 

 (5.20) 

 where qs,d,t is the design snow load, RM = 1 for second class checks, mod, 0.388tk   relative to a load 

application duration of t = 1 month. Like for (5.15), once again in this case we obtain a value of coefficient 
( )/2

test

air tin

gA kA



  of approximately 1.07. 

The procedure has been repeated for first class elements, for which a target probability value of 1.33510
-5

 

was assumed. The height a.s.l. is varied until the obtained value of pf is equal to the target pf value. 

Maintaining constant height, a deterministic design is then carried out by keeping the material partial safety 

factor constant at the value determined for second class verifications, and then deriving the maximum value 

RM admitted by resistance checks (5.20). Analogous calculations have also been repeated for a variation 

coefficient value of V = 0.6. The results obtained are summarized in Table 7. 
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Table 7. Verifications and partial safety factors for a plate subjected to snow actions. Results for a 1000  

1000  6 mm
3
 plate. 

n° Class V Verification formula 

Probabilistic 

performance 

function 

 

Pf,1y TR RM M 

1 2 0.2 

( )/2

, test mod

max, ,1month

( 0.388)

( 1)

air tin

g k gA A

d

M M

f k

R




 

 
 

 

( )/2

( ; ;1month)

air tin

g CDA Aefff 

 
1.3010

-6
 50 1 2.50 

2 2 0.6 
( )/2

, test mod

max, ,1month

( 0.388)

( 1)

air tin

g k gA A

d

M M

f k

R




 

 
 

 ( )/2

( ; ;1month)

air tin

g CDA Aefff 

 
1.3010

-6
 50 1 2.30 

3 1 0.2 
( )/2

, test mod

max, ,1month

( 0.388)air tin

g k gA A

d

M M

f k

R




 

 


 ( )/2

( ; ;1month)

air tin

g CDA Aefff 

 
1.3310

-5
 50 0.668 2.50 

4 1 0.6 
( )/2

, test mod

max, ,1month

( 0.388)air tin

g k gA A

d

M M

f k

R




 

 


 ( )/2

( ; ;1month)

air tin

g CDA Aefff 

 
1.3310

-5
 50 0.674 2.30 

 

It is noteworthy that that the case of V = 0.2 is in general more conservative than V = 0.6. The resulting 

partial safety factor values are comparable to those for wind actions, even if slightly less restrictive.  

 

5.3 Floor under live load 
 
Let us now consider the case study of a building floor panel. In evaluating the variable vertical load acting on 

the floor we refer to the indications furnished for each specific structural category in current national 

regulations and Eurocode 1 EN 1991 1-1 [CEN-TC250, 2002]. The live loads have to account for uniformly 

distributed vertical loads, qk and concentrated vertical loads Qk. Loads Qk are particularly important, 

especially in the case of glass floors, given the brittle nature of the material. For local check calculations, 

such loads must be viewed as conventional loads. Moreover they cannot be superimposed on the distributed 

vertical loads, which must instead be used for calculating the global stresses. In the absence of precise 

indications, the concentrated loads are considered to be applied on an area of 50  50 mm. 

The characteristic values of the vertical service loads for different buildings categories are those indicated in 

the relevant current regulations. The actions are generally represented by the characteristic values for a 50-

year return period. The live loads present on the floors are caused by the weight of the furniture, equipment, 

stored objects and people, without including in this type of load the structural and non-structural permanent 

loads. Differing live loads are anticipated according to the intended use of the building. 

Live loads vary randomly in both time and in space. Variations in space are assumed to be homogeneous, 

while the variations over time are divided into two components: a “permanent” and “discontinuous” one. The 

first takes into account the furnishings and heavy equipment: small fluctuations in this load are included in 

the uncertainties. The discontinuous component represents all types of variable loads not covered by the 

“permanent” component, such as gatherings of people, crowded halls during special events or the piling up 

of objects during renovations. Both components are modeled as stochastic processes. 

The stochastic field representing the load intensity is defined through two independent variables, V and U: 

the first associated to variations in the mean intensity of the load on the surface, while the second represents 



24 
 

the random spatial distribution of the load on the surface itself. 

The “permanent” component is modeled as an uniformly distributed equivalent load, which can be 

represented via a Poisson process in which the interval between one loading event and the subsequent one is 

distributed exponentially with an expected value of p. The intensity of the permanent load is assumed to 

have a Gamma distribution with expected value of p and standard deviation p equal to  

2 2 0
, ,p V U p

A

A
      

 (5.21) 

in which V is the standard deviation of random variable V, while U,p  represents the standard deviation of 

variable U. Moreover, in this expression,  is parameter that depends on the influence surface (which for 

such plates is taken to be equal to 2), A0 is a reference area that depends on the intended use, while A is the 

total surface area subjected to the load, with the convention that when A0/A > 1 it is assumed that A0/A  = 1. 

The parameters describing the distribution depend on the use and can be found in [JCSS, 2001]. 

The “discontinuous” component is also modeled as a Poisson process. The interval between one event and 

the next is distributed according to an exponential distribution with an expected value of q . The intensity of 

the “discontinuous” component is assumed to be interpretable via a Gamma distribution with expected value 

q  and standard deviation  

2 0
, ,q U q

A

A
     

 (5.22) 

where  U,q  is the standard deviation of the stochastic field describing the variability of the distribution of the 

load on the surface. These parameters, together with the reference interval Dq of the discontinuous load, is 

furnished in the JCSS Probabilistic Model Code part 2 [JCSS, 2001]. 

The maximum load is thus obtained for the combined “permanent” and “discontinuous” components, 

assuming stochastic independence between the two load types. Lastly, the maximum load during a reference 

period T is obtained by employing the theory of extreme values. 

The case study of a glass floor panel finds application in the ceilings of commercial centers and, more 

generally, buildings open to the public, where people can gather, but which are rarely, if ever, destined to 

support the “permanent” component of the variable load. Indeed, it is rather unlikely that a glass floor be 

designed to bear furniture or other furnishings that would defeat the purpose of its transparency, while, on 

the other hand, it is quite possible that a large number of people gather on the structure. Therefore, regarding 

the probabilistic model only the “discontinuous” component, regarding loads typical of a commercial centre 

are considered, assuming a distributed load equal to 5 kN/m
2
 for the deterministic design value. 

From the relation between the uniformly distributed load and the maximum tensile stress, determined via the 

finite element model, it is possible to find the distribution of the maximum stress in the plate subjected to the 

variable load. The probability of collapse of the plate subjected to the variable load can be determined from 

the convolution integral (4.5) between the probability density function of the maximum tensile stress in the 

plate subjected to the variable load and the cumulative distribution function of the glass fracture resistance. 

The distribution function of the glass resistance to fracture is found in a way wholly analogous to the 

procedure for determining the corresponding function for the plate subjected to wind loads. In the present 

case, we assume a characteristic load duration, equivalent to the integral of the spectrum, of 12 hours. 

In analyzing this case study, as the load is fixed and no parameter is amenable to variations, by which to be 

able to vary the design load (such as, for example, the height a.s.l. for snow), we vary the geometry, until we 

obtain a design that leads to a collapse probability value, obtained via the convolution integral, near to target 

value. From this point, by conducting a deterministic design of the plate itself, it has been possible to vary 

the material partial safety factor up to the limit value admitted by the resistance check. 

Table 8 shows the parameters assumed for the probabilistic load model, in conformity with [JCSS, 2001].  
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The plate dimensions that yield the optimal design under the design loads are 940  940  14 mm
3
. 

According to (4.12), such dimensions corresponds to a value of coefficient 
( )/2

test

air tin

gA kA



 that is still equal to 

about 1.07.  

 
Table 8. Parameters defining the “discontinuous” component of the variable loads. 

Destination of use  
A0 

[m
2
] 

q 

[kN/m
2
] 

U,q  

[kN/m
2
] 

q 

 [years] 

Dq 

[days] 

Commercial centers and markets  

susceptible of overcrowding 
100 0.4 1.1 1.0 5 

 

The verification is conducted only for second class elements, given that it is inadvisable to classify as first 

class elements whose collapse can cause people to fall. The values obtained in the case study are shown in 

Table 9. Note that the order of magnitude of the resulting coefficients M coincide with those for wind 

actions, shown in Table 6, as well as snow actions, indicated in Table 7. 

 
Table 9. Verifications and partial coefficients for a plate subjected to the action of variable anthropogenic 

loads. Results for a 940  940  14 mm
3
 plate. 

n° class Verification formula 

Probabilistic 

performance 

function 

Pf,1y TR RM M 

1 2 

( )/2

, test mod

max, ,12

( 0.501)

( 1)

air tin

g k gA A

d h

M M

f k

R




 

 
 

 

( )/2

( ; ;12 )

air tin

g CDA Aeff h
f 

 
1.3010

-6
 50 1 2.52 

 

6 Concluding remarks and open issues  
 

The calibration of partial safety factors has been conducted in agreement with the basic principles of design 

established by EN 1990 (Eurocode 0), by performing a full probabilistic analysis with methods of level III in 

paradigmatic case studies. In particular we have considered monolithic annealed-glass plates under wind, 

snow and anthropic loads. The main result is that, in order to achieve a probability of collapse compatible 

with second class elements according to Table 2 (class of consequences CC2 as in Table 1), one should 

consider a partial coefficient M = 2.5  2.55, as results from the less-restrictive values recorded in Table 6, 

Table 7 and Table 9. It should be remarked that, to this respect, the most severe action is wind load.  

In order to pass from verification in second class to first class, i.e., while considering a higher probability of 

collapse (Table 2), we propose to use a formula of the type (4.6) or (4.7), where the significance of the 

coefficient RM has been discussed at length in Section 4.2. Because of its definition, RM = 1 for verification in 

second class, whereas one can consider RM = 0.7 (Table 6, Table 7 and Table 9) for verification in first class. 

Here we have not provided the values of RM for verifications in third class essentially for two reasons. First 

of all, the accepted probability of collapse for third class is so low (see Table 2) that necessitates the 

extrapolation of the results of strength statistics on the extreme tails of the Weibull distribution, but this 

passage necessitates of more accurate investigations. In fact, as discussed at length in [Durchholtz et al., 

2005], it is in general not straightforward to statistically assess the strength for glass of very poor quality. On 

the other hand, elements that belongs to the third class are usually associated with very important structural 

works, which necessitates particular considerations. Albeit tentatively, a possible categorization of structural 
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elements in classes according to their specific use is recorded in Table 10.  

 

Table 10. Classification of structural glass elements according to their specific use. 

Type Class 

Vertical elements
** 

continuously restrained at the borders 1/0
*
 

Vertical elements
** 

with point-wise fixing constraints 2/1
*
 

Horizontal roofing 
**

 2 

Parapets with fall hazards 2 

Fins  2 

Floors, bearing beams 2 

Pillars, frames (specific studies with level 2 or 3 methods) 3 

Notes: 

(
*
) Within the same category, the choice of a more or less restrictive class depends on the importance of the 

work, the risk in case of collapse of the glass, and whether or not immediate safety countermeasures are planned 

to reduce the consequences of collapse (shoring, shielding, enclosures).  

(
**

) An element is considered vertical if its plane forms an angle of less than 15° with the vertical, while any 

element not satisfying this definition is considered to be horizontal. 

 

 

Unfortunately the present study is far from being exhaustive, because apart from the calibration of safety 

factors for third class structures, there are other issues still open. One of the major unsolved matters is the 

characterization of the strength of glass borders. In fact, it should be noticed that in all the cases treated in 

Section 5, the maximal tensile stress are produced approximately at the center of the panel and, in any case, 

sufficiently far from the borders. There are other typical cases, such as beams or fins, for which the 

maximum tensile stresses are in the proximity of the edges. Unfortunately, no experimental data are currently 

available regarding the specific resistance of the edge, nor is the corresponding curve of the distribution of 

the probabilities of fracture known. Indeed, the mechanical resistance of a plate’s border (neglecting possible 

chipping produced during handling and installation) depends on the finishing on the edge (cutting, grinding, 

etc.) and is therefore totally independent of defects on the plate surfaces. In general, mechanical production 

processes produce homogeneous “damage” on the glass surfaces that tends to lower the average mechanical 

resistance (low 0) but reduce its dispersion (high Weibull coefficient m).  

Following [Sedlacek et al., 1999], as also described in [Haldimann, 2006], the edge strength depends on the 

length of the edge itself, rather than on its surface area, in that the critical point is the border between the face 

and the edge. We may therefore consider the cumulative probability of fracture to be interpretable, 

analogously to (3.19), via a Weibull distribution of the form 

0.

( )
1 exp ,

edm

ed

edl

s
P ds

  
    

   
  

 (6.1) 

 

 

where med and 0.ed represent the Weibull parameters of the distribution, while the integral is assumed to 

extend the entire length of the tensed edge. Since the stress state on the edge is monoaxial, (s) in the 

expression represents the stress at the edge point with coordinate s, whose form is known from the boundary 

and load conditions. The distribution parameters must be calibrated based on standardized tests, about which, 

however, there is as yet no unanimous agreement. For example, [Sedlacek et al., 1999] refer to a three-point 

bending test on beams of length ltest = 0.46 m. Thus, assuming the stress along the edge to be linear, (6.1) can 
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be expressed, in a form equivalent to (3.19), as 

max
. . .

0.

1 exp , ,

edm

ed eff test eff test l test test

ed

P l l k l
  
    

   

 

 (6.2) 

where ltest is the length of the edge for the specimen of reference of the test (ltest = 0.46 m), while leff.test = 

kl.test ltest is its effective length. In this expression, 0.ed is a parameter with the dimensions of a stress for a 

length raised to the power of the exponent 1/med. 

The calibration of the partial safety factor for calculations in proximity of the edges should then follow the 

same lines of Section 4, according to the counterpart of expression (4.7) that should read 

mod, ,

max, , Q , ,( ) ,
t gltest l ed g k

d t w d t

M M

k k f
S p

R


   


 

 (6.3) 

 

 

where kmod,t and fg,k are defined as in (4.7). The quantity testgl l  is a scaling coefficient that defines the size 

effect and whose value must be calibrated starting from experimental results. 

Unfortunately at the moment there are not enough experimental data for a calibration based upon the 

statistical distribution of the edge resistance. Other aspects of concern relate to the decrease in resistance due 

to surface treatments, such as screen printing or etching, for which there are not yet sufficient experimental 

data. Last but not least, the calibration of partial factors should also include the case of heat or chemically 

toughened glass, but also for these we are still waiting for sound experimental data that may be processed on 

a statistical basis. 
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