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Abstract

Cold-bending of laminated glass panels, by forcing their contact with a constraining frame, is a promising

technique for free-form glazed surfaces. Their static state varies in time due to the viscosity of the polymeric

interlayer, which causes the decay of the shear-coupling of the constituent glass plies. The direct problem

consists in calculating the spatial and temporal evolution of stress after cold-bending. Considering an equiv-

alent secant elastic shear-modulus for the interlayer to account for its viscoelasticity, various conditions for

cylindrical deformations are analyzed in detail. A “conjugate-beam analogy” is proposed for the inverse prob-

lem, i.e., to determine the cylindrical deformed shape that, at a prescribed time, provides the desired state of

stress. Remarkably, the simplest constant-curvature deformation, often used for cold bending, produces high

shear stress concentrations in the interlayer with consequent risks of delamination. For the same sag, better

linear or cubic distribution of shear stress are attained with slightly different deformations, compatibly with

glass strength. Among the considered cases, the optimal configuration is sinusoidal, because it provides the

smoothest distribution of shear stress with inappreciable differences with respect to the circular shape.

Keywords: Laminated glass, cold bending, sandwich beam, shape optimization, shear coupling,
viscoelasticity.
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1. Introduction

Curved glass is a powerful tool of aesthetic design, and its use is steadily increasing in modern architec-
ture. There are two main categories of production: hot-bending and cold-bending. Hot-bent glass is obtained
by heating sheets of glass until they reach the softening point (glass transition temperature) and curving them
into the desired shape against a negative form. Cold bending is a recent fabrication process that is widely
developing because it allows for the construction, at relatively low cost, of curved free-form glazed surfaces
with no need of negative moulds. In general, the cold bent surface is a single-curvature developable surface.
Cold bending into a double curved shape is also possible (Beer 2013, Galuppi et al. 2014), but since this pro-
duces high membrane stress, single-curvature bending remains the most used technique, also because recent
advances in theoretical algorithms allow for the discretization of any surface using single curvature panels
only. Therefore, large double-curvature glazing of any form can be approximated by cylindrically bent panels
(Pottmann et al. 2008, Eigensatz et al. 2010).

In cold bending, flat glass panels are brought to the desired geometry by external contact forces, con-
straining the curved glass unit in the desired shape. The most common technique2 consists in curving glass
at the construction site, holding it in place with clamps or adhesives against an underlying frame. Laminated
glass is particularly adapt for cold bending. This is a sandwich structure composed by two or more glass plies
bonded together by thin polymeric interlayers with a process at high temperature and pressure in autoclave.
The limited shear coupling of the glass plies through the interlayer (Behr et al. 1993, Hooper 1973) reduces
the overall stiffness of the panel, increasing the maximum attainable curvature through cold bending compat-
ibly with the material strength. As pointed out by Norville et al. (1998), in general the bending stiffness of
laminated glass is intermediate between the layered limit (free-sliding glass plies) and the monolithic limit
(shear rigid interlayer). Since stress and strain in the monolithic limit are much lower than in the layered
limit, appropriate consideration of the shear coupling offered by the interlayer is important to achieve an
economical design. The problem has been considered by many authors, one of the most recent contribution
being the careful finite element analysis by Ivanov (2006) that includes a list of the most relevant literature.

Due to the viscosity of the polymer, as remarked by Belis et al. (2007), the cold-bent laminated glass
element exhibits a stress relaxation from the instant in which it is completely positioned in its curved frame.
These effects must be precisely predicted in order to evaluate the temporal variation of the state of stress.

The shear coupling provided by the polymeric interlayer depends upon its viscoelastic response, which is
highly time-dependent and temperature-dependent (Louter et al. 2010, Bennison et al. 2005, Froli and Lani
2011, Barredo et al. 2011, Galuppi and Royer-Carfagni 2012b). In the design practice it is customary to rely
upon approximate solutions, the most common of which considers the polymer as a linear elastic material,
characterized by a proper secant shear modulus, calibrated according to temperature and characteristic du-
ration of the design actions (Bennison and Stelzer 2009). Such an approximation, usually referred to as the
secant stiffness method or quasi elastic approximation, is equivalent to neglecting the memory effect of the
viscoelastic material. This in general provides estimates on the side of safety in the case of monotone loading
histories (Galuppi and Royer-Carfagni 2012b), even if there may be loading-unloading paths for which the
results are not conservative, as demonstrated in Galuppi and Royer-Carfagni (2013).

Here, the single-curvature cold-bending of a laminated glass panel is analyzed. Due to the hypothesis
of cylindrical deformation, the problem is tackled by using sandwich beam theory, developing a method
originally proposed by Newmark et al. (1951) to evaluate the relationship between the prescribed cold-bent
shape and the spatial and temporal evolution of the state of stress in both glass and polymeric interlayer.
Stress relaxation is calculated by adopting the secant stiffness approximation. The model allows to solve the
direct problem, i.e., to find the state of stress for any given assigned deformation of the laminated glass beam.

2Another technique consists in laminating a package while being constrained in the desired shape, so that after lamination it is the
bond of the interlayer that keeps the assembly in the curved state. This procedure, usually denoted cold lamination bending (Kassnel-
Henneberg 2011, de Vericourt, Fildhulth and Knippers 2011), is not considered here.
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The most used shape for cold bending is constant-curvature shape. However, it will be analytically proved
that such a configuration is associated with shear stress concentrations in the polymeric interlayer, possibly
producing delamination as sometimes observed in the practice. The higher the shear stiffness of the interlayer,
the more critical is its state of stress. In the limit case of stiff interlayers (monolithic limit), the shear stress
becomes singular because concentrated forces at the extremities are necessary to guarantee equilibrium.

A “conjugate-beam analogy” is then proposed to solve the inverse problem, i.e., to determine the cold-
bending shape associated with an assigned shear stress distribution in the interlayer at a prescribed time of
the history. In fact, it is shown that such shape coincides with the deformation of a conjugate beam under a
fictitious load and appropriate boundary conditions, which are determined by the form of the desired shear
stress. Various types of shear stress distributions are analyzed in detail. Remarkably, the simplest constant-
curvature shape is the one that produces the highest shear stress in the interlayer. Slightly modifying the
deformation due to cold bending, better linear or cubic distributions of shear stress can be obtained. Among
all the considered cases, the optimal configuration is the sinusoidal deformation, associated with a cosine
distribution of shear stress in the interlayer that allows to obtain the maximum sag of the laminated package,
compatibly with the strength of glass and polymer. For standard geometric parameters, the difference be-
tween the sinusoidal and the circular shapes cannot be appreciated with the naked eye, and consequently the
aesthetics is not compromised. Indeed, so small differences in the constrained deformations can provide so
noteworthy advantages.

2. Cold bending: mathematical model

Consider a laminated glass beam of length L and width b, composed by two glass layers of thickness h1
and h2 and Young’s modulus E, bonded by a thin polymeric interlayer of thickness h with time-dependent
shear modulus G(t). Introduce a right-handed orthogonal reference frame (x, y), with x parallel to the beam
axis and y directed upwards, as indicated in figure 1a. Perfect bonding between glass and polymeric interlayer
is assumed and, under the hypothesis that strains are small and rotations moderate, the prescribed vertical
displacement v(x), assumed positive if in the same direction of increasing y, is the same for all the three
layers. The cold bending process consists in forcing the beam to assume a curved shape. From a practical
point of view, the laminated glass plate is glued or clamped along its border onto a negative curved frame,
so to assume a cylindrical deformation as schematically represented in figure 1b, where the bond thickness is
supposed to be negligible. In the assumed beam model, this is equivalent to assign the vertical displacement
v(x).

L

x

y
h2

h1

hH

E,A ,I2 2

E,A ,I1 1

G(t)

a) b)

Figure 1: Laminated glass beam: a) longitudinal view and magnification of the composite package; b) Assigned deformation through
cold-bending.

The viscoelasticity of the interlayer induces the relaxation of the shear coupling of the glass ply, so
that the macroscopic bending stiffness of the beam varies with time. Consequently, the bending moment



pr
ep

rin
t

Optimal cold bending of laminated glass 4

M(x, t) is time-dependent, as well as the constraint reaction forces per unit length p(x, t). Denoting, here and
further, with ′ derivative with respect to x, and assuming that M(x, t) > 0 when v′′(x) > 0, equilibrium of an
elementary portion of the beam gives

p(x, t) = −M′′(x, t) , (2.1)

with p(x, t) positive if directed downwards.

2.1. Viscoelasticity of the interlayer and secant-stiffness approximation
The viscoelastic properties of the interlayer3 can be interpreted through the Maxwell-Wiechert model

(see Wiechert (1893)), according to which, under constant shear-strain, the shear modulus of the viscoelastic
material decays with time according to the Prony series

G(t) = G∞ +
N∑

k=1

Gke−t/θk = G0 −
N∑

k=1

Gk(1 − e−t/θk ), (2.2)

where G∞ is the long-term shear modulus (corresponding to the totally relaxed material), whereas the terms
Gk and θk, k = 1..N, are respectively the relaxation shear moduli and the relaxation times associated with the
k − th Maxwell element. The instantaneous shear modulus G0 is thus given by G∞ +

∑N
k=1 Gk. Temperature

dependence may be taken into account by using the Williams-Landel-Ferry model (Williams et al. 1955). Pa-
rameters that define the Prony series are seldom furnished by the producer, but they can be directly measured
(Bennison and Stelzer 2009).

In general, the stress in the interlayer depends upon the whole strain history (Galuppi and Royer-Carfagni
2012b), but a very popular practical approach consists in adopting the secant stiffness approximation, accord-
ing to which the polymer behaves as a linear elastic material, whose elastic shear modulus depends upon
temperature and characteristic duration of the design actions. As discussed by Galuppi and Royer-Carfagni
(2012b; 2013), this is equivalent to assume that the stress τ(x, t) in the interlayer is a linear function of the
shear strain γ(x, t) according to an expression of the form

τ(x, t) = G(t)γ(x, t) , (2.3)

where G(t) is the shear modulus. The use of such an approximation is particularly effective because there are
several practical methods to readily calculate the response of laminated structures composed of linear elastic
layers.

In general G(t) can be found from an expression of the type (2.2), but more practically the shear mod-
ulus of the polymer is provided by manufactures in tables, as a function of environmental temperature and
characteristic duration of the applied shear distortion. Table 1 reports typical values of G(t) for PVB at 20◦C,
obtained through creep tests at constant shear strain, by measuring the shear stress as a function of time.

2.2. Governing equations for the equilibrium of a laminated glass beam
With reference to Figure 1a, let us define

Ai = hib, Ii =
bh3

i

12
(i = 1, 2), H = h +

h1 + h2

2
, A∗ =

A1A2

A1 + A2
, Itot = I1 + I2 + A∗H2. (2.4)

3There are essentially three main commercial polymeric films: Polyvinyl Butyral (PVB), Ethylene Vinyl Acetate (EVA), and iono-
plast (Bennison et al. 2001). For cold bending, it is convenient to use a soft interlayer, to diminish the shear coupling of the glass plies
and thus reduce the bending stiffness of laminated glass. For this reason, one of the best choice is certainly PVB, a polyvinyl acetate
with addition of softeners that provide plasticity and toughness, enhancing adhesion-strength and increasing glass transition temperature
up to 20 − 25◦C.
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t G(t) [MPa]
3 seconds 8.06

1 hour 0.840
1 day 0.508
1 year 0.266
t → ∞ 0.052

Table 1: Time dependence for the shear modulus of a particular type of PVB at 20◦C.

Clearly, Itot represents the moment of inertia of the cross sections of the external layers properly spaced
by the interlayer gap (Galuppi and Royer-Carfagni 2012a). As demonstrated in Galuppi and Royer-Carfagni
(2012a), if strains and rotations are small, the kinematics is completely described by the vertical displacement
v(x), the same for the two glass components, and the horizontal displacements u1(x, t) and u2(x, t) of the
centroid of the upper and lower glass element, respectively. Observe that the vertical displacement does not
depend on time because the beam is fixed to the curved frame, whereas the horizontal displacements, which
are affected by the shear coupling through the interlayer, can vary with time due to its viscoelastic response.

2.2.1. First variation of the strain energy
Let us suppose that, at each instant t, the beam is bent under the action of the forces per unit length p(x, t)

to assume the shape v(x). The shear strain in the interlayer is (Galuppi and Royer-Carfagni 2012a)

γ(x, t) =
1
h

[u1(x, t) − u2(x, t) + v′(x)H] , (2.5)

so that, under the quasi-elastic approximation, the strain energy of the beam −L/2 ≤ x ≤ L/2 at the instant t
can be written in the form

E[u1(x, t), u2(x, t), v(x)] =∫ L/2

−L/2

{
1
2

[
E(I1 + I2)[v′′(x)]2 + EA1[u′1(x, t)]2 + EA2[u′2(x, t)]2

+
Gb
h

(u1(x, t) − u2(x, t) + v′(x)H)2
]
+ p(x, t) v(x)

}
dx . (2.6)

Here, the first term represents the bending of the glass plies, the second and the third terms are the extensional
strain energy of the upper and lower glass ply, respectively, the fourth term corresponds to the strain energy
of the interlayer whereas, recalling that p(x, t) and v(x) have opposite positive directions, the last term is the
potential of the external loads. For fixed t, the zeroing of the first variation of the functional with respect to
the variations v(x) + δv(x), u1(x, t) + δu1(x, t) and u2(x, t) + δu2(x, t) gives the Euler’s equilibrium equations

E(I1 + I2)v′′′′(x) −GbHγ′(x, t) + p(x, t) = 0 ,
EA1u′′1 (x, t) = Gbγ(x, t) ,
EA2u′′2 (x, t) = −Gbγ(x, t) .

(2.7)

As discussed in (Galuppi and Royer-Carfagni 2012a), condition (2.7)1 is the equilibrium in the y-direction
of a beam with inertia I1 + I2 under the external load p(x, t) and under a distributed couple per unit length
m∗(x, t) = −GbHγ(x, t), which represents the stiffening contribution of the interlayer.

Standard arguments in the calculus of variation furnish the boundary conditions
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[
(−E(I1 + I2)v′′′(x) +GbHγ(x, t))δv(x)

]L/2

−L/2
= 0 ,[

E(I1 + I2)v′′(x)δv′(x)
]L/2

−L/2
= 0 ,[

EA1u′1(x, t)δu1(x, t)
]L/2

−L/2
= 0 ,[

EA2u′2(x, t)δu2(x, t)
]L/2

−L/2
= 0 .

(2.8)

The terms δv(x), δu1(x, t) and δu2(x, t) are null at the boundary where the displacement is prescribed, and
arbitrary otherwise. In general, at the beam ends the horizontal displacements are not constrained, so that
δui(±L/2, t) , 0 , i = 1, 2, implying that the axial forces Ni(x, t) := EAiui(x, t) are null at the boundaries. The
quantity appearing in (2.8)1 may be regarded as a fictitious shear force

V∗(x, t) =
( − E(I1 + I2)v′′′(x) +GbHγ(x, t)

)
, (2.9)

accounting for the effects of the distributed moment per unit length due to the shear stress transferred by the
interlayer.

2.2.2. Newmark’s approach
An effective analytical model for a structure made of two beams with elastic shear-coupling was proposed

in 1951 by Newmark et al. (1951), and applied to the case of steel-concrete composite bridge beam. The
method allows to write the equilibrium equation (2.7)1 as a function of the vertical displacement v(x) for those
cases in which the overall bending moment in the beam is known, i.e., the beam is statically determined.

H

N1 N1

N2N2

M1
M1

M2
M2

M M

Figure 2: Schematic representation of the internal actions in a sandwich beam.

As schematically shown in Figure 2, the overall bending moment in the beam, M(x, t), is due to the sum
of the bending moments Mi(x) = EIiv′′(x), i = 1, 2, of the i-th glass ply, and the contribution due to the
axial forces Ni(x, t) = EAiu′i(x, t), i = 1, 2, multiplied by the corresponding level arm H. Following the same
argument exposed in (Galuppi and Royer-Carfagni 2012a), if no external axial forces are acting at the beam
ends one can demonstrate that N1(x, t) = −N2(x, t) and, hence, that

M(x, t) = E(I1 + I2)v′′(x) − N1(x, t)H = E(I1 + I2)v′′(x) + N2(x, t)H . (2.10)

It is then possible to find the expressions for the axial strains u′i(x, t), i = 1, 2, in the form

u′1(x, t) =
1

HA1

[
(I1 + I2)v′′(x) − M(x, t)

E

]
, u′2(x, t) =

1
HA2

[
− (I1 + I2)v′′(x) +

M(x, t)
E

]
. (2.11)

These, together with equation (2.3) and (2.5), lead to the relationship

τ′(x, t) = G(t)γ′(x, t) =
G(t)

hA∗H

[
Itotv′′(x) − M(x, t)

E

]
. (2.12)
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By rearranging this equation, one finds

τ′(x, t) =
G(t)
hA∗

[
HA∗v′′(x) +

N1(x, t)
E

]
=

G(t)
hA∗

[
HA∗v′′(x) − N2(x, t)

E

]
, (2.13)

which is a noteworthy explicit relationship between the axial forces in the glass plies and the shear stress
transmitted through the interlayer.

By substituting (2.12) in (2.7)1 and recalling (2.1), the first equilibrium equation can be written in the
form

E(I1 + I2)v′′′′(x, t) − bItotG(t)
hA∗

v′′(x) +
bG(t)
hEA∗

M(x, t) − M′′(x, t) = 0 , (2.14)

which represents Newmark’s equation.
Moreover, using (2.10) and recalling (2.9), the boundary conditions (2.8) may be re-written as[

V∗(x, t)δv(x)
]L/2

−L/2
= 0 ,[

E(I1 + I2)v′′(x)δv′(x)
]L/2

−L/2
= 0 ,[

1
H

(
E(I1 + I2)v′′(x) − M(x, t)

)
δu1(x)

]L/2

−L/2
= 0 ,[

1
H

(
− E(I1 + I2)v′′(x) + M(x, t)

)
δu2(x)

]L/2

−L/2
= 0 .

(2.15)

For the case in which the horizontal displacements are not constrained at the beam’s ends, M(±L/2, t) =
E(I1 + I2) v′′(±L/2), ∀t.

It is also important to observe that (2.12) allows to write Newmark’s equation (2.14) as a function of the
shear stress τ(x, t) in the interlayer in the form

−EH2A∗v′′′′(x, t) − bHτ′(x, t) +
EhHA∗

G(t)
τ′′′(x, t) = 0 , (2.16)

where H2A∗ represents the difference between the moment of inertia Itot, corresponding to the the monolithic
limit, and the sum of the moments of inertia of the two composing glass plies I1 + I2, associated with the
layered limit. In other words, this equation emphasizes the increase of bending stiffness due to the shear
coupling of the glass plies.

If one uses (2.13), boundary conditions (2.8) may be rewritten as[
V∗(x, t)δv(x)

]L/2

−L/2
= 0 ,[

E(I1 + I2)v′′(x)δv′(x)
]L/2

−L/2
= 0 ,[

EH2A∗
(
v′′(x) − h

HG(t)τ
′(x, t)

)
δu1(x)

]L/2

−L/2
= 0 ,[

EH2A∗
(
− v′′(x) + h

HG(t)τ
′(x, t)

)
δu2(x)

]L/2

−L/2
= 0 .

(2.17)

Observe, then, that whenever the horizontal displacements are not constrained at the beam’s ends, then
τ′(±L/2, t) = G(t)H

h v′′(±L/2).

2.2.3. Conjugate-beam analogy. Cold-bending shape-optimization problem
It is useful to provide an analogy to interpret equation (2.16), relating the shear stress with the vertical

displacement of the sandwich beam. In fact, such an equation is identical to the load-deflection differential
equation for a conjugate Euler-Bernoulli beam, with moment of inertia Ĩ, subject to a fictitious distributed
load q̃(x), which reads
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EĨv′′′′(x) + q̃(x) = 0 , q̃(x) =
Ĩ

H2A∗
[
bHτ′(x, t) − EhHA∗

G(t)
τ′′′(x, t)

]
. (2.18)

Clearly, the deformation does not depend upon Ĩ and one can pose, without loosing generality, Ĩ = H2A∗.
The boundary conditions for such a beam come from (2.17) and will be discussed in the examples proposed
in the following sections.

From this equation, one should observe that although the shear stress τ(x, t) may vary with time due to
the viscoelasticity of the interlayer, in order to satisfy (2.18) the shear stress distribution must be such that
the fictitious load q̃(x) is time-independent for any assigned shape v(x). Furthermore, q̃(x) inherits the same
regularity of v′′′′(x).

This conjugate-beam analogy can be useful to tackle two types of problems for the cold bending of
laminated glass.

• The direct problem consists in determining the time-dependent shear-stress distribution τ(x, t) due to the
cold bending process for any given shape of the constraint, i.e., for any given prescribed displacement
v(x). Once the fictitious distributed load q̃(x) that causes the assigned deflection has been found from
(2.18)1, the corresponding shear stress τ(x, t) can be obtained by integrating, for any assigned time t,
the differential equation (2.18)2, with appropriate boundary conditions (2.17).

• The inverse problem consists in finding the shape of the constraint that, at the prescribed time t, provides
the desired distribution of shear stress τ(x, t) in the interlayer. This is a problem of structural optimiza-
tion, where one is interested in the best cold-bending shape that is compatible with the strength of ma-
terials, taking full advantage of the mechanical properties of the interlayer. To solve this cold-bending
shape-optimization problem, equation (2.18) may be directly used. The desired vertical displacement
v(x) coincides with deformed shape of the conjugate beam, loaded by q̃(x) calculated through (2.18)2
according to the a priori assumed distribution τ(x, t) of shear stress. The relevant boundary conditions
come from (2.17) and will be discussed in detail in Section 4.

The resulting bending moment M(x, t) in the laminated glass beam may be obtained from equation (2.12)
once the distribution of shear stress τ(x, t) is known. Alternatively, one can consider the differential equation
(2.14), with boundary conditions (2.15), which is the counterpart of (2.18). Once the vertical displacement
and the bending moment are known, recalling equation (2.10) the maximum normal stress σi in the i − th
glass ply, i = 1, 2, can be readily evaluated through the expressions derived in (Galuppi and Royer-Carfagni
2013) and reads

|σi(x, t)| =
∣∣∣∣∣Ni(x, t)

Ai
± Mi(x, t)

Ii

hi

2

∣∣∣∣∣
=

∣∣∣∣∣ M(x, t) − E(I1 + I2)v′′(x)
HAi

± E
hi

2
v′′(x)

∣∣∣∣∣ . (2.19)

The contact forces transmitted by the constraints to the laminated glass beam coincide with the distributed
load p(x, t), calculated from (2.1). Of course the order of the relevant differential equations confirm that
in the case of symmetric bending, i.e., symmetric vertical displacement, the distribution of shear stress is
antisymmetric.

3. Direct problem

In the direct problem the cold-bending shape v(x) is fixed and the time-dependent shear stress distribution
τ(x, t) needs to be found.
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3.1. Constant-curvature cold bending
The most common shape used for cold-bending is certainly that where the radius of curvature ρ, and

hence the curvature K := 1/ρ, is constant (Fildhuth and Knippers 2014, Fildhuth et al. 2014, Belis et al.
2007). Based upon the assumption of small strains and rotations, in the present model the arc of the circle
is approximated by a parabola because K ≃ v′′(x). In Figure 3 a graphical comparison is made between a
parabolic deformed shape with v′′ = −10−4 mm−1, and an arc with (constant) curvature K = −10−4 mm−1,
for a beam of length of 2400 mm. It is evident that for the assumed values, which are typical of a practical
situation, the two curves are indistinguishable: vmax = 72 mm for the parabola and vmax = 72.26 mm for the
arc.

-1000 -500 0 500 1000
0

10

20

30

40

50

60

70

80

x [mm]

v
(x

)
[m

m
]

constant curvature

parabolic curve

Figure 3: Comparison between a parabolic deformed shape and an arc of a circle.

As an illustrative example, consider the constant-curvature cold-bending of a beam of length L = 2400
mm, width b = 800 mm, composed by two glass plies of thickness h1 = h2 = 6 mm and Young’s modulus
E = 70000 MPa, bonded by a PVB interlayer of thickness h = 1.52 mm and shear modulus G(t). This is the
same geometry considered by Fildhuth and Knippers (2014). According to the small strain hypothesis, the
equation of the imposed displacement is v(x) = K

2

(
x2 − L2

4

)
with K = −10−4 mm−1, and its graph is plotted in

Figure 3.
From the conjugate beam method governed by equation (2.18), one finds that the fictitious distributed

load q̃(x) that causes the prescribed deflection of the beam is null because

q̃(x) =
Ĩ

H2A∗
[
bHτ′(x, t) − EhHA∗

G(t)
τ′′′(x, t)

]
= EĨv′′′′(x) = 0 . (3.1)

The time-dependent shear stress distribution due to the cold bending process may be found by solving
the differential equation ot the third order (3.1). Since no axial force is applied at the beam extremities, in
(2.17)3−4 one has that δu1(x, t) and δu2(x, t) are arbitrary, so that τ′(±L/2, t) = KHG(t)/h. Moreover, since
by symmetry and equilibrium

∫ L/2
−L/2 τ(x, t)dx = 0, ∀t, one finds the expression

τ(x, t) =
β(t)EA∗HK

b
sinh (β(t)x)

cosh(β(t)L/2)
, β(t) :=

√
bG(t)
EhA∗

. (3.2)

Assuming for G(t) the values from Table 1, plots of τ(x, t) for various values of t, i.e., for different time
after the forcing of the beam in the desired position, are shown in Figure 4 as a function of x. The instant
t = 3 s corresponds to the time that is usually required to position the glass element on the curved constraining
frame. What should be noticed here is that, whereas the long-term behavior entails low values of the shear
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stress in the interlayer, in the short-term (high values of G(t)) the shear stresses tend to concentrate in the
neighborhood of the beam ends.
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Figure 4: Constant-curvature cold bending; coupling shear stress transmitted by the interlayer for various times.

Such an high level of required shear stress can hardly be supported by the interlayer, and risk of delamination
is high. Indeed, recent experimental tests by Fildhuth and Knippers (2014) seem to confirm this finding.

Analytically, it can be verified that

lim
G(t)→0

τ(x, t) = lim
β(t)→0

τ(x, t) = 0 ;

lim
G(t)→∞

τ(x, t) = lim
β(t)→∞

τ(x, t) =


∞ x = −L/2 ;
0 |x| < L/2 ;
−∞ x = L/2 .

(3.3)

This means that when the monolithic limit is attained, i.e., when G(t) → ∞ and no relative slippage occurs
between glass plies, cold-bending with constant curvature implies the occurrence of concentrated shear forces
F in the interlayer, at the beam extremities. The force F acting at x = −L/2 can be evaluated as

F = lim
β(t)→∞

∫ 0

−L/2
τ(x, t) = −EA∗HK lim

β(t)→∞

cosh(β(t)L/2) − 1
cosh(β(t)L/2)

= −EA∗HK . (3.4)

This somehow intriguing finding will be discussed in Section 3.2.
The bending moment M(x, t) and the maximum axial stress σmax(t) := max

x,i
σi(x, t) may be evaluated by

using (2.12) and (2.19), and read

M(x, t) = EItotK −
EhA∗H2

β(t)
cosh(β(t)x)

cosh(β(t)L/2)
,

σmax(t) =
∣∣∣∣∣EK

[A∗H(cosh(β(t)L/2) − 2)
Aicosh(β(t)L/2)

± hi

2

]∣∣∣∣∣ . (3.5)
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It should be observed that, at the monolithic limit, limβ(t)→0 M(x, t) = EItotK, which represents the (constant)
bending moment acting on a monolithic beam with curvature K and moment of inertia Itot.

Figure 5 shows plots of the bending moment and the maximum axial stress σmax(t) for different times
after having been forced on the constraining profile.
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Figure 5: Constant-curvature cold bending; a) bending moment and b) maximum axial stress in the glass plies.

In order to evaluate the accuracy of the proposed method, the obtained results, in terms of both shear
stress transmitted by the interlayer and axial stress in the glass plies, have been compared with an accurate
numerical analysis. Simulations have been made with the FEM code ABAQUS, using a 3-D mesh with solid
20-node quadratic bricks with reduced integration, available in the program library (ABAQUS 2010). Linear
elasticity is used for all materials, considering the appropriate secant stiffness of the polymer in agreement
with the quasi elastic approximation. The structured mesh has been created by dividing the width of the beam
in 20 elements, the thickness of each glass ply in 3 elements and the thickness of the interlayer in 2 elements.
The mesh has been refined in the neighborhood of the beam ends to allow a correct estimate of the shear
stress in this zone. In order to simulate the cold-bending, the out-of-plane displacement of the surface of the
composite package is constrained to follow a parabolic profile.

Figures 6a and 6b show the comparison between numerical and analytical results for, respectively, the
shear stress transmitted across the PVB interlayer (evaluated through equation (3.2)) and the axial stress in
the glass plies (equation (3.5)2). Comparisons are made for t = 3 s, corresponding to G = 8.06 MPa and t = 1
day, for which G = 0.508 MPa. It is evident that the proposed method provides very accurate results.

In the secant stiffness approximation, the shear stress relaxation coincides with the time-dependent shear
modulus G(t) calculated according with the Prony’s series (2.2). Using the coefficients furnished by Bennison
and Stelzer (2009), Figure 7 shows the maximum shear stress in the interlayer τmax(t) := max

x
τ(x, t), as well

as the maximum axial stress in the glass plies, as a function of time t for t > 3 s, which represents the time
assumed to be necessary to force the laminate onto the constraining frame.

3.2. On the occurrence of concentrated shear forces at the monolithic limit
Consider a laminated glass beam with a shear-rigid interlayer (G(t) → ∞), cold bent with constant cur-

vature (K = v′′(x) = const). The coupling of the glass plies is due to the distribution of shear stresses τ(x),
shown in Figure 8a, which is related with the axial force Ni(x), i = 1, 2, in the i − th glass ply through the
equations of horizontal equilibrium (2.7)2−3, implying that

N1(x) = −N2(x) =
∫ x

0
τ(r) dr . (3.6)
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Figure 6: Constant-curvature cold bending. Comparisons of the analytical and numerical results in terms of a) shear stress transmitted
by the interlayer and b) maximum axial stress in the glass plies.
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Figure 7: Constant-curvature cold bending. Evolution in time of the maximum shear stress (in the interlayer) and the maximum axial
stress (in the glass plies).



pr
ep

rin
t

Optimal cold bending of laminated glass 13

F

M1

M2

M1

M2

t(x)

t(x)

M1

M2

M1

M2

F
F

F

F
F

F

F

a) b)

Figure 8: Shear stresses transmitted by the interlayer: a) continuous shear stress distribution, b) singular stress distribution associated
with concentrated forces at the beam ends.

When the monolithic limit is attained, the moment of inertia of the beam is Itot and the bending moment
is M(x) = EItotK = const. On the other hand, by requiring that the two glass plies have the same vertical
displacement and, hence, the same curvature, one has M1(x)

EI1
=

M2(x)
EI2
= K = const. Recalling relation (2.10), it

is evident that the axial forces must be constant, that is

N1(x) = −N2(x) = −M(x) − M1(x) − M2(x)
H

= const , ⇒
∫ x

0
τ(r) dr = const . (3.7)

Since from the boundary conditions (2.8)3−4 one finds Ni(±L/2) = 0, i = 1, 2, equation (3.7) would imply
that the shear stress distribution along the beam is null. However, the solution τ(x) = 0 ∀x would lead to the
paradoxical conclusion of null shear coupling offered by the interlayer and to

N1(x) = −M(x) − M1(x) − M2(x)
H

= −E(Itot − I1 − I2)K
H

= 0 . (3.8)

This means that the proposed solution is not compatible with the condition of equal vertical displacement
of the glass plies. This condition requires the existence of shear coupling through the interlayer, but at the
same time this has to be null almost everywhere for x ∈ (−L/2, L/2). Therefore, the only possibility is to
assume the occurrence of concentrated shear forces F in correspondence of the beam ends, as represented in
Figure 8b.

¿From equilibrium, it is easy to show that

N1(x) = −N2(x) = F , ⇒ F = −M(x) − M1(x) − M2(x)
H

= −EHA∗K . (3.9)

This conclusion is in agreement with equation (3.4).

4. Inverse problem and shape optimization

The inverse problem consists in finding the deformed shape in the cold-bending process that leads to a
desired distribution of the shear stress in the interlayer. Before starting the analytical study of this issue, a
few comments need to be made.

First of all, observe that for any constrained shape of the beam, fixed in time, the shear stress in the inter-
layer is time-dependent because of its viscoelastic properties. In order to satisfy (2.18), it is thus necessary
that the shear stress distribution maintains the fictitious load q̃(x) constant in time. Hence, it is not possible
to prescribe both the spatial and time dependence of the shear stress τ(x, t), but only its spatial distribution at
a given time t. The temporal evolution of the shear stresses is governed by the time dependence of the shear
modulus G(t), evaluated according to (2.2), but it must be such to assure that the fictitious load q̃(x) does not
vary in time.
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The stress in the laminated glass beam may vary during its lifetime. Since the main goal is certainly to
control the long-term behavior of laminated glass, the optimization of the shear stress in the interlayer should
be done for the condition in which the polymer is almost totally relaxed, i.e., for G(t) → G∞. To distinguish
this stage, the corresponding stress distribution will be denoted in the sequel as τ∞(x) := limt→∞ τ(x, t), so
that the fictitious load of (2.18) becomes

q̃(x) =
Ĩ

H2A∗

[
bHτ′∞(x) − EhHA∗

G∞
τ′′′∞ (x)

]
. (4.1)

In any case, the forthcoming considerations could also be applied to control the shear stress at any instant of
the panel lifetime. Apart from the long-term situation, it would be also of interest to verify the shear stress
immediately after the cold-bending procedure, when the shear modulus of the interlayer is the highest.

Once the shear distribution for the assumed value of G(t) have been fixed, from the beam-analogy of
Section 2.2.3 the vertical constraining displacement v(x) coincides with the deformed shape of the conjugate
beam under the fictitious load given by (2.18), or (4.1) for t → ∞. The corresponding boundary conditions
for the vertical displacement, which are defined by (2.8), not necessarily coincide with boundary condition
of the laminated glass beam under consideration4.

Four different-in-type spatial distributions of the shear stresses (hyperbolic sinusoidal, linear, cubic and
sinusoidal), will be considered. As it is clear from Figure 9, the deformed shapes that will result from such
distributions are very close one-another, but the corresponding shear stress in the interlayer will be much
different.

-1000 -500 0 500 1000
0

10

20

30

40

50

60

70

80

x [mm]

v
(x

)
[m

m
]

constant-curvature

linear shear stress

cubic shear stress

sinusoidal shear stress

Figure 9: Comparison among the deformed shapes of the beam for different-in-type distributions of the shear stress, maintaining the
same maximum displacement.

4.1. Validation. Hyperbolic sinusoidal distribution of shear stress

The hyperbolic sinusoidal distribution of shear stress is of the same type found in the direct problem of
Section 3.1 for the case of constant curvature, and it is now considered for the sake of validating that result.
Consider then the distribution

τ∞(x) = C sinh(β∞x) , (4.2)

4This is also true in the famous analogy of Christian Otto Mohr (1835–1918), which allows the computation of displacements and
slopes in a linear elastic Euler-Bernoulli beam as bending moments and shear forces in an adjoint beam loaded by auxiliary forces and
having modified support conditions (Timoshenko and MacCullough 1949).
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where C is the constant representing the amplitude and β∞ :=
√

bG∞
EhA∗ . The fictitious load q̃(x) is null as per

equation (4.1).
The vertical displacement of the conjugate beam under such a load satisfies

v′′′′(x) = 0 ⇒ v(x) = c1x3 + c2x2 + c3x + c4 , (4.3)

where c1, c2, c3 and c4 are constants that must be determined from the boundary conditions. Observe,
in passing, that if the conjugate beam was simply supported as the original laminated glass beam, from
v(±L/2) = 0 and v′′(±L/2) = 0 one would find v(x) = 0 ∀x, and consequently C = 0 in (4.2) (null shear
stress). The correct boundary conditions for the conjugate beam must be found from (2.17)3−4, which inherit
the information about the shear stress. Since δu1(x, t) and δu2(x, t) are arbitrary, one finds

v′′(±L/2) =
h

HG∞
τ′∞(±L/2) =

h C
HG∞

β∞ cosh(β∞L/2) . (4.4)

Moreover, imposing that v(±L/2) = 0, so to rule out the rigid body displacement, one finds from (4.3) that

v(x) =
K
2

(
x2 − L2

4

)
=

h C
2HG∞

β∞ cosh(β∞L/2)
(
x2 − L2

4

)
. (4.5)

Hence, as expected, the deformation is identical to that found in the direct problem of Section 3.1. In fact,
the function (4.5) coincides with (3.2) calculated for G(t) = G∞ because, recalling the expression of β∞, one
has C = β∞EA∗HK

b cosh(β∞L/2) .
At other times of the history, the shear stress τ(x, t) must satisfy the differential equation (2.18)2, with

boundary conditions still given by (2.17)3−4. The corresponding solutions coincide with those given by
equation (3.2) and represented in Figure 4 and 7a. The bending moments and the axial stress in the glass
plies may be evaluated by means of (2.12) and (2.19), respectively. Their values, given by equations (3.5),
are plotted in Figures 5 and 7b.

4.2. Linear distribution of shear stress

Let us consider now a linear distribution of shear stress, which corresponds to a constant fictitious load,
of the type

τ∞(x) = −2T
L

x , ⇒ q̃(x) = − Ĩ
H2A∗

2bHT
L
, (4.6)

where T is the maximum value of the stress.
Reasoning as in Section 4.1, the boundary conditions are v(±L/2) = 0 and, from (2.17)3−4, v′′(±L/2) =

−2 h
HG∞L T . Consequently, the displacement field takes the form

v(x) =
bT

HLEA∗

(
x4

12
− L2x2

24
+

L4

192

)
− c

L

(
x2 − L2

4

)
, (4.7)

where the parameter c, which represents the rotation at the beam extremities, reads c = T
(

h
HG∞
+ bL2

12HEA∗

)
.

The maximum displacement is vmax = v(0) = T
(

hL
4HG∞

+ 5bL3

192HEA∗

)
. For the same beam considered in Section

3 (L = 2400 mm, b = 800 mm, h1 = h2 = 6 mm, h = 1.52 mm), when vmax = 72 mm one finds that the
maximum shear stress for t → ∞ is T = 0.028 MPa. The deformed shape is plotted in Figure 9.

Once that the deformed shape associated with the desired distribution of shear stress at t → ∞ has been
found, one can solve the direct problem to calculate the evolution in time of the static state . Assigned the
displacement (4.7), τ(x, t) is found through (2.18), with boundary conditions τ′(±L/2, t) = G(t)H

h v′′(±L/2)

and the equilibrium condition
∫ L/2
−L/2 τ(x, t)dx = 0, ∀t, leading to
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τ(x, t) = −2T
L

x − 2T
β(t)L

G∞ −G(t)
G∞

sinh(β(t)x)
cosh(β(t)L/2)

, β(t) :=

√
bG(t)
EhA∗

. (4.8)

The corresponding plots at different times are shown in Figure 10. It should be observed that the state of
stress arising at the beginning is much more severe than that appearing in the long-term.
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Figure 10: Bending with linear long-term shear stress. Evolution in time of the shear stress in the interlayer.

The bending moment, which can be evaluated through (2.12), or equivalently (2.14), with boundary
conditions (2.15), reads

M(x, t) =
2T
L

[
EHhA∗

( 1
G∞
− 1

G(t)

) cosh(β(t)x)
cosh(β(t)L/2)

+
bItot

2HA∗

(
x2 − L2

4

)
− EhItot

HG∞
+

EhHA∗

G(t)

]
, (4.9)

where β(t) has been defined in (4.8). The bending moment clearly varies with time according with G(t) and
tends to be parabolic for G(t) → G∞. The maximum axial stress |σi(x, t)| in glass is determined by (2.19).
Figure 11 shows the corresponding trends at various times.

Figure 12 shows the relaxation in time of both the maximum shear stress in the interlayer τmax(t) and the
maximum axial stress σmax(t) in the glass plies.

4.3. Cubic distribution of shear stress

Let us assume a cubic distribution of the shear stress, varying from τ∞(−L/2) = T and τ∞(L/2) = −T ,
and such that the fictitious load q̃(x) is parabolic, with null values at the beam ends. In particular, let us
consider

τ∞(x) =
T x
L

bG∞(4x2 − 3L2) + 24EhA∗

bG∞L2 − 12EhA∗
,

q̃(x) =
Ĩ

H2A∗
a
(
x2 − L2

4

)
, a = − 12T Hb2G∞

bG∞L2 − 12EhA∗
.

(4.10)
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Figure 11: Bending with linear long-term shear stress. a) Bending moment and b) maximum tensile stress in the glass plies.
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Figure 12: Bending with linear long-term shear stress. Time-evolution of maximum shear stress (in the interlayer) and maximum axial
stress (in glass).
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With the conjugate-beam analogy of Section 2.2.3, one finds a displacement of the form

v(x) =
(
x2 − L2

4

) [
Tb2G∞

120 L EHA∗

(
x2 − L2

4

)
(4x2 − 13L2) − c

L

]
, (4.11)

where the parameter c, which represents the rotation at the beam extremities, reads

c =
T

H(bG∞L2 − 12EhA∗)

[
Lb2G∞
10EA∗

− 12Eh2A∗

G∞

]
. (4.12)

The corresponding plot for vmax = 72 mm is shown in Figure 9.
Assumed the shape (4.11), the time-dependent shear stress distribution may be found with the same

procedure of the previous sections and reads

τ(x, t) =
T x
L

G∞
G(t)

bG(t)(4x2 − 3L2) + 24EhA∗

bG∞L2 − 12EhA∗

+
24ThEA∗

Lβ(t)G(t)G∞

G2(t) −G2
∞

bG∞L2 − 12EhA∗
sinh(β(t)x)

cosh(β(t)L/2)
.

(4.13)

The graphs corresponding to various times are plotted in Figure 13. From the comparison of such figure
with Figures 10 and 4, observe that the short-term shear stresses are quite similar one another, since they all
present stress concentrations at the beam extremities.
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Figure 13: Bending with cubic long-term shear stress. Shear stress transmitted through the interlayer at different times.

The bending moment and the maximum axial stress, calculated according to (2.12) and (2.19), respec-
tively, turn out to be very similar to those evaluated for the case of linear distribution of the shear stress (see
Figure 11). Analoguosly, the trend of the time-decay of the maximum axial stress in the glass plies and the
maximum shear stress in the interlayer is very similar to that found in the previous sections.
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4.4. Sinusoidal distribution of shear stress

The last case is that of sinusoidal distribution of the shear stress that leads to a fictitious load q̃(x) of the
form

τ∞(x) = T sin
(
πx
L

)
, ⇒ q̃(x) =

I
H2A∗

T EhHA∗

G∞

(
bG∞
EhA∗

+
π2

L2

)
cos

(
πx
L

)
, (4.14)

where T , again, represents the maximum value of the shear stress, occurring at the beam ends. The shape
of the constraint profile can be evaluated through (2.18). This particular case is different from the other
so far considered because the first derivative of τ∞(x) at x = ±L/2 is null, so that from (2.17)3−4 one has
v′′(±L/2) = 0. Adding the condition v(±L/2) = 0, one finds that the conjugate beam is simply supported.
The resulting vertical displacement reads

v(x) = − hT
G∞H

(
bG∞
EhA∗

+
π2

L2

)
L3

π3 cos
(
πx
L

)
. (4.15)

The maximum vertical displacement depends upon T according to an expression of the type

T = − G∞H

h
(

bG∞
EhA∗ +

π2

L2

) π3

L3 vmax . (4.16)

A plot of (4.15) is shown in Figure 9. Indeed, all the deformations obtained in the previous sections are
juxtaposed in the same picture for the same vmax = 72 mm and, from these, it is evident how limited are the
differences between one another. Nevertheless, the stress distribution in both glass plies and interlayer are
different in type.

For the same laminated package considered in the previous section, cold-bending according to (4.15)
produces in time the shear stress distribution

τ(x, t) = −TG(t)
G∞

(
bG∞
EhA∗ +

π2

L2

)
(

bG(t)
EhA∗ +

π2

L2

) sin
(
πx
L

)
. (4.17)

Figure 14 shows graphs of τ(x, t) as a function of x, for various values of t. By comparing Figure 14 with
Figure 4, which represents its counterpart for the case of constant-curvature bending, observe that now there
are no shear stress intensification in the neighborhood of the beam extremities, even when the shear modulus
of the interlayer is quite high. Indeed, the maximum shear stress is much lower that in all the other cases
considered so far.

The bending moment and the maximum axial stress in the glass plies can be evaluated through (2.12) and
(2.19), which give

M(x, t) =
T Eh
G∞

(
bG∞
EhA∗

+
π2

L2

)[
− EhHA∗π

L
(

bG(t)
A∗ +

π2

L2

) + ItotL
Hπ

]
cos

(
πx
L

)
,

σmax(t) =

∣∣∣∣∣∣∣∣E π
2

L2

[
− bG(t)H

EhAi

(
π2

L2 +
bG(t)
EhA∗

) ± hi

2

]
T

h
(

bG∞
EhA∗ +

π2

L2

)
G∞H

L3

π3

∣∣∣∣∣∣∣∣ .
(4.18)

Figure 15 shows the bending moment M(x, t) and the axial stress σ(x, t) as a function of x at different
times t. Comparing Figure 15 with Figure 5, notice that for any given t the maximum axial stress in the glass
plies is slightly higher in the case of cosinusoidal bending than in the case of constant curvature bending.
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Figure 14: Cosinusoidal bending. Shear stress transmitted by the interlayer for different times.
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Figure 15: Cosinusoidal bending. a) Bending moment and b) maximum axial stress in the glass plies.
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For example, at t = 3 s it is approximately 20% higher. On the other hand, the maximum shear stress in the
interlayer is approximately 70% lower.

Figure 16 shows the maximum axial stress in the glass plies and the maximum shear stress in the interlayer
as a functions of time.

10
5

10
10

0

0.05

0.1

0.15

0.2

0.25

t
m

a
x

[M
P

a
]

10
5

10
10

20

25

30

35

40

45

50

55

60

s
m

a
x

[M
P

a
]

1 hour

1 day

1 year

1 hour

1 day

1 year

3 s
3 s

Figure 16: Cosinusoidal bending. Time-evolution of maximum shear stress (in the interlayer) and maximum axial stress (in glass plies).

5. Discussion and conclusions

The aim of this article has been to evaluate the relationship between the deformed shape of a laminated
glass beam attained through a cold-bending process, and the spatial and temporal distribution of shear stress
transmitted by the interlayer to the glass plies. To do so, an analytical model that develops the method
originally proposed by Newmark et al. (1951) has been proposed under the classical “quasi elastic” approx-
imation, i.e., the polymer forming the interlayer is an elastic material whose shear modulus is a function of
load duration and environmental temperature.

In the practice, the most common shape that is given to glass through cold bending is certainly the one
with constant curvature. However, we have shown that such a shape is perhaps one of the worst that could
be selected, because very strong shear stress concentrations occur in the interlayer in the neighborhood of
the beam ends. The higher is the shear modulus of the polymer forming the interlayer, the most critical is
the corresponding state of stress. For a very high shear modulus of the interlayer, such that the response
of laminated glass approaches the monolithic limit, cold bending with constant curvature theoretically leads
to concentrated shear forces (infinite stress) at the ends of the beam. This may explain the delamination
phenomena that may be encountered during cold bending. Of course, due to the viscosity of the polymer, the
stress concentrations diminish with time, but the stress at the extremities of the beam remains much higher
than at midspan.

The form of the equations governing the problem has suggested a “conjugate-beam analogy”, which
is very useful to solve the inverse problem: given the shear stress distribution in the interlayer, find the
cold-bending shape that produces it. In fact, such a shape is the deformation of a conjugate (auxiliary)
beam under a fictitious load, which depends upon the assumed distribution of shear stress only. Proper
boundary conditions must be used for the conjugate beam, which are in general different from the boundary
conditions for the laminated glass under consideration. This approach recalls in some ways the famous
method proposed by Otto Mohr (1835-1918) to find the slope and deflection of the elastic curve by calculating
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the shear and bending moments diagrams in a conjugate beam with appropriate loads and boundary conditions
(Timoshenko and MacCullough 1949). Of course the resulting cold-bending shape depends upon the shear
modulus of the interlayer, which varies with time. Consequently, such deflection produces the assumed shear
stress distribution only when the shear modulus of the interlayer takes the target value.

In other words, the shear stress in the interlayer varies with time, but the cold-bending shape can be ap-
propriately calibrated so to produce, at a prescribed time of the element life, the desired distribution. Critical
times to be checked are of course the initial stage, when the shear modulus of the polymeric interlayer is the
highest, and the final long-term stage, when the shear modulus attains the lowest value. In the article we have
focused on the latter condition, even if the method can be applied in exactly the same manner at any time of
the history. Of course, an optimal distribution of shear stress is characterized by its smoothness and absence
of stress concentrations.

Different shear stress distributions have been analyzed in detail. Apart from a distribution of the form of
a hyperbolic sinusoid, corresponding to a constant-curvature cold-bent shape, the cases of linear, cubic and
sinusoidal distributions have been considered. The hyperbolic sinusoid distribution is the one that, for fixed
maximum deflection of the laminated glass beam, gives the most critical state of stress in the interlayer. The
linear and cubic distributions give very similar results, both in terms of shear stress in the interlayer and axial
stress in the glass plies.

But the form that presents the greatest advantages is the sinusoidal shear stress distribution. In fact, in
this case there is no stress intensification in the neighborhood of the end of the beam, even when the shear
modulus of the interlayer is high. In general, for the same sag of the laminated glass beam, the shear stress
in the interlayer is lower than in the aforementioned cases, even if the maximum stress in the glass plies may
be slightly higher at particular times of the history.

In any case, the differences in the deformed shapes of the laminated glass beam, associated with all the
considered shear stress distributions, are minimal. Consequently, the aesthetics of the curved glazing is in
practice not affected by any one of the proposed choices. This study has demonstrated that the constant-
curvature shape should be avoided for cold-bending, because it is associated with noteworthy shear stress
concentrations at the panel extremities, with consequent risk of delamination. The sinusoidal shape seems to
be the optimal one, since it is associated with a smooth distributions of shear stress at any time of the element
life.
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