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Abstract

To assess the reliability of glass structures, a common practice is to test full-scale prototypes

in the lab, and verify that the failure load is higher than that predicted from the design

strength by means of structural calculations. However, any procedure of design-by-testing

should be considered with great care because the gross strength of glass, being governed by

the opening of pre-existing cracks on the material surface, strongly depends upon the type

of defectiveness, the specimen size, the load history and the type of stress field (uniaxial,

bi-axial). A model based upon an assumed law of subcritical crack propagation and a

distribution à la Weibull of pre-existing flaws is presented. This allows to correlate the

expected glass strength with the target probability of failure for any type of specimen size and

load history. The discussion of paradigmatic examples confirms that appropriate theoretical

considerations are needed for the correct interpretation of experimental results.
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1. Introduction

The incessant investigation of ever greater transparency has led to an increasingly strong

demand for glazed surfaces in modern construction works. Glass is being used in challenging

elements, such as larger and larger panels, roofs, beams, floors, stairs and frames, where the

brittle material is required to carry substantial loads, therefore achieving a definite “struc-

tural” role. Improvements in production and technologies, such as tempering, increase the

macroscopic strength of this material; lamination of glass plies sandwiching polymeric inter-

layers mitigates the effect of brittleness, because the shards remain adherent to polymeric

interlayers after glass breakage. Considerable research is being undertaken to improve the

understanding of the load-carrying capacity of structural glass elements under the actions

those elements are exposed to during their service life, in order to achieve the requirements

in terms of safety and serviceability that are prescribed by construction standards.

The reliability of a structural design depends on the capability to determine the material

failure strength with accuracy. The most used methods to measure the mechanical strength

of glass are the Four Point Bending (4BP) test and the Coaxial Double Ring (CDR) test,

which are precisely defined by harmonized standards [1, 2, 3]. Both tests induce a uniform

stress field in the loaded area of the specimen: the 4PB test generates an almost uniaxial

stress field1, while in the CDR test the stress field is approximately equi-biaxial. Results

are often interpreted using a two-parameter Weibull distribution [5], which is traditionally

considered the best statistical approach [6]. The characteristic value of strength is defined as

the 5% fractile of the population of data, and represents a reference quantity to be considered

in the design.

But the strength of glass, the brittle material par excellence, is affected by some peculiar

aspects, which are of minor importance in other building materials such as steel and concrete,

1The stress field is in general not perfectly uniaxial, because a stress concentration occurs in proximity

of the edges, where defectiveness is in generally greater that in the core of the specimen [4]. Therefore, the

results may be strongly influenced by the type of edge working.
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but acquire a crucial role in this case. At the macroscopic level, glass does not exhibit any

ductility and breaks as soon as the stress at a point overcomes a certain limit, but no theory

of glass strength can disregards consideration of the underlying microstructure. In fact, the

material strength is governed by the presence of existing microscopic surface flaws, which

open and progress under the applied stress [7]. Therefore, Linear Elastic Fracture Mechanics

(LEFM) is the most useful tool to investigate the mechanical property of glass and interpret

its brittle character.

Surface treatments (especially along the edges) have a strong influence on the strength

because they may alter the size and distribution of surface flaws, and the larger the surface,

the higher is the probability of finding critical defects (size effect). The state of stress is also

important, because cracks open in mode I and the probability of finding a dominant crack

at right angle to the maximal tensile stress is higher under a equi-biaxial state of stress than

under a uniaxial state of stress. An even more peculiar aspect is that cracks can slowly grow

in time without any variation of the applied macroscopic stress. This phenomenon, usually

referred to as slow crack propagation or static fatigue [8], makes the glass strength strongly

dependent upon the load history.

This is why the results obtained from the standardized tests, where specimen size and load

rate are prescribed, need to be re-scaled according to a theoretical model of crack growth

before being interpreted statistically [9]. In other words, the characteristic value of strength

must be referred to standard conditions, i.e., a particular specimen size (usually 1 square me-

ter), a precise load rate (2 MPa per second) and a prescribed state of stress (equi-biaxial).

Experimental data are broadly dispersed and strongly affected by several factors (surface

treatments, border finishing) that influence the distribution of flaws on the surface. More-

over, the values associated with a prescribed fractile of the population of data considerably

change if the specimens size, the load rate and the type of stress field are different from those

taken as reference.
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A common practice, used by many designers and also implemented in standards2, is to

produce full-scale prototypes to be tested in laboratory to determine whether their actual

response meets the design requirements. Due to the costs of the prototypes, their number

is necessarily low, and it is not rare to find structural calculations where the designers

considers the results from testing of just one prototype3. In general, designers are happy if

the prototype breaks at a stress level higher than the design strength, usually associated with

the 5% fractile value of the assumed distribution of material strengths. Sometimes, designers

strongly remark that the ultimate stress measured on the prototype is much higher than the

design strength of glass prescribed by standards, arguing that such a value is too much

on the safe side. However, some critical issues are neglected in this rationale. First of

all, the characteristic value of strength is in general associated with the 5% fractile of the

population of data, whereas when testing just a few specimens one should expect, albeit

tentatively, results closer to the median, i.e., the value corresponding to the 50% probability

of failure. Moreover, the size of the prototype and the complex state of stress to which it is

subjected should be properly taken into account. Last but not least, the loading rate during

the experiments affects the results because of the static fatigue phenomenon.

The aim of this article is to show how all the aforementioned aspects can affect the result of

experimental investigations. Given a distribution of strength à la Weibull, whose parameters

have been calibrated out of an extensive experimental campaign [4], and assumed a widely

accepted model of slow-crack propagation [8], we consider the hypothetical testing of a

reference structure. For this, we theoretically calculate the values of strength associated

with a target probability of failure, taking into account the size-effect and the type of stress,

supposing that loads are either constant in time, or applied at a constant rate. Three

paradigmatic examples are presented: i) a plate under an equi-biaxial stress field, similar

2For example, large façade panels are usually tested according to standards [10, 11].
3This observation is the result of the experience of one of the authors while serving as a reviewer of plans

of glass construction works. Such an experience has been mainly made at the Board of Public Works at the

Ministry of Infrastructure and Transport of the Italian Republic.
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in type to the configuration assumed in a CDR test according to the standard [3]; ii) a

rectangular specimen in a four-point bending setup, chosen for the wide use that the 4PB

test has in the practice to determine the flexural strength of beams and floors [2]; iii) an

edge supported plate under uniform distributed load, as the paradigmatic representation of

a façade panel exposed to wind pressure.

We will show that the failure loads associated with the 5% fractile and the median values for

these different-in-type structures can be very different one-another, even assuming the same

statistical distribution of strength for glass. Therefore, before designing an experimental

test on a complex structure, it is necessary to preliminary estimate the consequences of

size effect, state of stress, static fatigue, surface defectiveness, load rate, and define from

this analysis the actual expectations in terms of structural strength for the required target

probability. The method of analysis proposed in this article can take into account all these

effects and, although applied here to three cases only, it can be extended to the most general

configurations.

2. Probabilistic model of glass strength

The macroscopic mechanical properties of glass stem from its brittle nature, which is charac-

terized by a high sensitivity to stress concentrations often caused by surface flaws. Accurate

characterization of the fracture strength of glass must then incorporate the nature and re-

sponse of such surface cracks, whose size and orientation are often unknown. Therefore, a

probabilistic model needs to be used to statistically interpret the generally broadly dispersed

experimental data.

2.1. Mechanical behavior of a single surface flaw: the subcritical crack growth model

Linear elastic fracture mechanics (LEFM) provides a good model to interpret the brittle

failure of glass. This is caused by propagation of one dominant crack in mode I, while the

contributions in mode II and mode III are always supposed to be negligible. Assuming that
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the dominant surface crack is semielliptical and orthogonal to the crack surface, the stress

intensity factor in mode I is given by

KI = Y σ⊥
√
πc, (2.1)

where σ⊥ is the tensile stress normal to the crack plane, c is the size of the crack (size of

the smallest of the two elliptical axes) and Y is a factor that takes into account the aspect

ratio of the ellipse (for a semicircular crack Y = 2.24/π). Instantaneous failure of glass

occurs when the stress intensity factor KI exceeds a critical value, known as the critical

stress intensity factor KIc. This can be considered as a material constant, related with the

fracture toughness of the glass itself. The value KIc = 0.75 MPa m0.5 can be conveniently

used for practical purposes [12].

It is highly recognized that flaws can grow in size over time when they are exposed to a

positive crack opening stress [7]. This phenomenon is often referred to as subcritical crack

growth or static fatigue, because the glass element may fail after a certain time even when

the crack size is far from the critical limit cc, which from (2.1) is given by

cc =

(
KIc

Y fc
√
π

)2

, (2.2)

where fc is the measured (macroscopic) stress at right angle to the crack plane in the case

of instantaneous collapse.

It is often assumed [13, 14] that the speed of the subcritical crack growth can be expressed

as a function of the stress intensity factor according to a power-law of the type [15]

dc

dt
= v0

(
KI

KIc

)n

, (2.3)

where v0 and n are material constants that depend upon the thermo-hygrometric conditions

and the type of glass. For soda-lime glass, one can conveniently assume v0 = 0.0013 m/s for
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test performed at 40− 70% relative humidity, but such value may increase if the humidity is

higher, so that it is customary to prudentially consider v0 = 0.0025 m/s. Also the exponent n

is influenced by the humidity and may vary between 12 and 20; however, there is agreement

to consider n = 16, associated with RH = 100%, as a representative value [16].

Considering a load history σ⊥ = σ(t), integration of (2.3) between the time t = 0, when the

crack size is initially ci, and the failure time tf , when c = cc, leads to

∫ cc

ci

c−n/2dc =

∫ tf

0

v0

(
σ(t)Y

√
π

KIc

)n

dt. (2.4)

In general [2, 3], tests are performed at a constant stress rate σ̇test, so that σ(t) = σ̇testt.

Assuming v0 and n to be constant, and denoting with ftest the tensile strength measured at

the end of the test, one finds that the initial size of the dominant crack is of the form

ci =

[
n− 2

2

v0
n+ 1

(
Y
√
π

KIc

)n
fn+1
test

σ̇test
+

(
Y ftest

√
π

KIc

)n−2
] 2

n−2

. (2.5)

Such a parameter represents an index of the defectiveness initially present in the glass spec-

imen.

2.2. Random population of surface flaws. Influence of state of stress and size effect

Equation (2.4) describes the lifetime of a single crack. In general, a glass contains a large

number of randomly-oriented surface flaws: because of its brittle nature, failure is assumed

to occur when the first flaw reaches the critical size (weakest link model). For this reason,

the Weibull distribution is usually considered the best choice to statically characterize the

material strength [6]. The failure probability of a specimen, whose surface A is under the

stress σ⊥ acting at right angle to the dominant crack plane, can be written as [17]

Pf = 1− exp

[
−
∫
A

(
σ⊥
η0

)m]
dA, (2.6)
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where η0, the reference strength, and m, the shape exponent, are the parameters of the

Weibull distribution. High values of m indicate low dispersion of data, and this is represen-

tative of a homogeneous defectiveness of the sample population.

The previous expression can be simplified by assuming a homogeneous and isotropic defec-

tiveness, i.e., there is not a preferred orientation and a preferred location for the dominant

crack. Let σ1 and σ2 represent the principal component of the (macroscopic) stress acting on

A, and indicate with ψ the angle that the direction of σ1 forms with respect to the normal

to the dominant crack plane. Then, σ⊥ can be written as

σ⊥ = σ1
[
cos2(ψ) + r sin2(ψ)

]
, (2.7)

having defined r = σ2/σ1. Since there is an equal probability of finding a dominant crack

of any orientation (isotropic defectiveness), one can consider the mean value of all possible

orientations, and obtain, from (2.6), the expression

Pf = 1− exp

{
−
∫
A

[(
σ1
η0

)m
1

π

∫ π

0

(
cos2(ψ) + r sin2(ψ)

)m
dψ

]
dA

}
. (2.8)

Following [18], one can further introduce the correction factor C, accounting for the particular

state of stress, in the form

C =

[
2

π

∫ π/2

0

(
cos2(ψ) + r sin2(ψ)

)m
dψ

]1/m

, (2.9)

so that equation (2.8) can be re-written as

Pf = 1− exp

[
−
∫
A

(
Cσ1
η0

)m

dA

]
= 1− exp

[
−kA

(
σmax

η0

)m]
, (2.10)

where σmax represents the maximum tensile stress in the loaded area and the quantity kA

(k ≤ 1), referred to as the effective area Aeff, is defined as
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Aeff = kA =

∫
A
(Cσ1)

mdA

(σmax)m
. (2.11)

Expression (2.10) allows to compare, from a statistical point of view, the results obtained

from different-in-type tests. In the case of an equibiaxial stress distribution, like in the test

standard [3], one has σ1 = σ2 = σeqbiax and, from (2.9), C = 1. Therefore, (2.10) reads

Pf = 1− exp

[
−
∫
A

(
σeqbiax
η0

)m

dA

]
. (2.12)

In the case of a uniaxial state of stress, like in the 4PB test of [2], one has in (2.7) r = 0

and, from (2.9), C = Cuniax =
[
2
π

∫ π/2

0
(cosψ)2m dψ

]1/m
. The fact that Cuniax < 1 indicates

that a specimen under uniaxial stress has a lower failure probability than the same sample

under a biaxial stress field, due to the lower probability of finding a dominant crack at right

angle to the maximal tensile stress.

If one wishes to compare the aforementioned two different test configurations, for specimens

with identical defectiveness the probability of failure should be the same provided that the

stress is properly re-scaled according to (2.10). This is accomplished provided that

[∫
A

(
σeqbiax
η0

)m

dA

]
=

[∫
A

(
Cuniax σuniax

η0

)m

dA

]
. (2.13)

In the simplest case in which the stress is homogeneous in the same loaded area, one has

σuniax =
σeqbiax[

2
π

π/2∫
0

(cosψ)2m dψ

]1/m
. (2.14)

The meaning of this expression is that one expects to find higher strengths if the specimen

is loaded in uniaxial mode rather than in biaxial mode.

Of course, (2.10) does account for the size effect, because the larger the area, the higher is

the probability to find a dominant crack of prescribed size. In order to compare the failure
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probabilities obtained from different test geometries and make the results homogeneous and

comparable, it is customary to refer to a homogeneous equibiaxial stress distribution acting

over the unit area (UA) of 1 m2. For this case, since C = 1, one has from (2.10)

Pf = 1− exp

[
−UA

(
σeqb,UA

η0

)m]
. (2.15)

For a generic area and a generic stress field, the statistical distribution is given by (2.10).

For specimens with the same defectiveness the probabilities of failure are the same provided

that

[
−UA

(
σeqb,UA

η0

)m]
=

[
−kA

(
σmax

η0

)m]
, (2.16)

which leads to the following relationship

σmax = σeqb,UA

(
UA

kA

)1/m

. (2.17)

This equation allows re-scaling the results of a generic test with respect to the reference

configuration of an equibiaxial state acting on an unitary area.

2.3. Influence of loading history

2.3.1. Constant stress

In order to determine the effects of static fatigue, the starting point is equation (2.4). The

first analysis considers the effects of a constant load that produces the stress σ(t) = σa in the

interval [0, tf ], being tf the time when failure occurs. Supposing that the thermo-hygrometric

parameters remain constant and neglecting dynamical effects, the critical crack size cf can

be evaluated via (2.2) by setting fc = σa. Integration of (2.4) between the time t = 0, when

the crack size is c = ci, and the failure time tf , when c = cf , reads
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2

n− 2

(
c

2−n
2

i − c
2−n
2

f

)
= v0

(
Y
√
π

KIc

)n

σn
a tf . (2.18)

From this, denoting withKi the stress intensity factor associated with the initial crack length

ci as per

ci =

(
Ki

Y σa
√
π

)2

, (2.19)

one obtains the time to failure tf in the form

tf =
2

n− 2

K2−n
i

v0
Kn

Ic
Y 2σ2

aπ

[
1−

(
Ki

KIc

)n−2
]
. (2.20)

This expression can be re-written in terms of stress. Recalling from (2.19) that Ki =

Y σa
√
πci, and denoting with σif the stress that would produce instantaneous rupture, so

that KIc = Y σif
√
πci, one obtains

tf =
2

n− 2

KIc
2

v0Y 2σ2
aπ

[(
σif
σa

)n−2

− 1

]
. (2.21)

It is necessary now to give a statistical characterization of this expression, in order to consider

the probability of failure in lifetime predictions. From (2.10), the probability to find a

dominant crack at right angle to the direction of the stress σif is given by

Pf = 1− exp

[
−kA

(
σif
η∗0

)m∗]
, (2.22)

where η∗0 and m∗ are the Weibull parameters referred to instantaneous failure. From this

one finds

σif = η∗0

[
1

kA
ln

1

1− Pf

]1/m∗

, (2.23)
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which can be substituted into (2.21) to obtain an expression that indicates the probability

of failure in the time tf when the stress σa is applied.

The parameters η∗0 and m∗ can be obtain from the population of measures obtained in a

standardized test at constant stress rate σ̇test [2, 3]. In fact, let ftest represent the measured

tensile strength in such a test, and let

Pf = 1− exp

[
−kA

(
ftest
η0

)m]
, (2.24)

represent the corresponding Weibull statistics, obtained by interpolating the experimental

data. But, recalling that ci =
(

KIc

Y σif
√
π

)2

, substituting in (2.5) one obtains

(
KIc

Y σif
√
π

)2

≃
[
n− 2

2

v0
n+ 1

(
Y
√
π

KIc

)n
fn+1
test

σ̇test

] 2
n−2

, (2.25)

where in (2.5) the second term on the r.h.s. has been neglected with respect to the first

term (a-posteriori verification indicates this simplification is perfectly licit). Obtaining ftest

from (2.25), substituting in (2.24), and equating the resulting failure probability with that

corresponding to (2.22), one finally finds

m∗ =
n− 2

n+ 1
m , (2.26)

η∗0 =


[
n− 2

2

v0
n+ 1

(
Y
√
π

KIc

)2
1

σ̇test

] 1
n+1

η0


n+1
n−2

. (2.27)

Equations (2.21) and (2.23) will be applied to some paradigmatic cases (Section 3) in order

to evaluate the failure time tf for different values of the applied stress σa and for several

target failure probabilities Pf .
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2.3.2. Constant stress rate

It is also of interest to evaluate, from a statistical point of view, the effects of the speed of

loading on the results of a test. Let ftest be the failure stress in a reference test at the stress

rate σ̇test and let, in general, fg be the failure stress for another test on identical specimen,

for which the stress rate is σ̇. Since ci is an intrinsic material parameter, representative of

the defects that are initially present in the material and independent of the type of test,

from (2.5) one can write

n− 2

2

v0
n+ 1

(
Y
√
π

KIc

)n
fn+1
test

σ̇test
+

(
Y ftest

√
π

KIc

)n−2

=
n− 2

2

v0
n+ 1

(
Y
√
π

KIc

)n
fg

n+1

σ̇
+

(
Y fg

√
π

KIc

)n−2

.

(2.28)

The strength ftest can be related to the failure probability according to equation (2.24) and

can therefore be written as

ftest = η0

[
1

kA
ln

1

1− Pf

]1/m
. (2.29)

Substituting in (2.28), it is then possible to evaluate the strength fg as a function of the load

rate σ̇ for different values of the failure probability Pf . This relationship will be discussed

in the examples of Section 3.

2.4. Parameters of the statistical distribution

The strength of glass is in general obtained through standardized tests under precise thermo-

hygrometric conditions (temperature T = 24± 3◦C and relative humidity RH = 50± 10%)

and at constant load rate (σ̇ = 2 MPa/s). In Europe, the most used test methods to

determine the mechanical strength of glass are the Four Point Bending test (4PB) [2] and

the Coaxial Double Ring test (CDR) [1, 3]. Both of them aim at inducing a homogenous state

of stress within the loaded area of the specimen, uniaxial for the 4PB test and equi-biaxial

in the CDR test.
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An extensive experimental campaign was conducted at the Stazione Sperimentale del Vetro in

Italy and the main results are reported in [4]. The size of the specimens and the experimental

apparatus were slightly different from those prescribed by the European Standards, but

results were re-scaled to take into account the effective area according to (2.17).

Table 1: Weibull parameters for 6 mm specimens obtained from the ex-

perimental tests. Reference unit area UA= 1 m2 and load rate σ̇ = 2

MPa/s.

Stressed surface Shape modulus Reference strength

m η0 [MPa mm2/m]

Tin 7.3 406

Air 5.4 1096

Parameters of the Weibull probabilistic model, obtained by rescaling the experimental results

to an equi-biaxial state of stress acting on the unit area UA= 1 m2 and load rate σ̇ = 2

MPa/s, are summarized in Table 1. Recall that during the float production process one

side of the glass paste is directly in contact with the molten tin bath (tin side), while the

other surface is directly exposed to air (air side). The diverse boundary induces a diverse

surface defectiveness on the surfaces of the glass ply, and two different Weibull distributions

should be used for the tin and the air sides. This distinction will be maintained in the

following.

3. Case studies

Three examples are now considered:
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i. a glass ply of 1 m2 under an equi-biaxial state of stress;

ii. the four-point-bending (4PB) of a glass ply;

iii. a square glass panel under uniformly distributed load.

For every case the time to failure at constant stress, as well as the effect of the stress rate

on collapse load, will be discussed from a statistical point of view.

3.1. Equi-biaxial state stress of stress

For a glass plate of area 1 m2, consider a loading configuration that generates an equibiaxial

stress state on its surface, i.e., r = 1 in (2.7) and C = 1 in (2.9). The assumed Weibull

distribution of strengths is (2.15), where m and η0 are taken from the experiments of [4] and

recalled in Table 1. Recall that these parameters, as indicated in Section 2.4, are already

referred to the unitary area UA=1 m2 and to a standard load rate σ̇ = 2 MPa/s. For

the reasons discussed in Section 2.4, a distinction is made between the tin-side and air-side

values.

In order to investigate the expected time to failure under constant load, equation (2.21)

will be evaluated taking into account the expression (2.23) for σif , with k = 1. All the

relevant parameters for this analysis are summarized in Table 2. Figure 1 shows the time-to-

failure vs. stress (in logarithmic scale) for different values of the target failure probability,

distinguishing the tin-side (Figure 1(a)) from the air-side (Figure 1(b)).

To illustrate, if in the test a constant (equi-biaxial) state of stress is applied for 5 minutes,

the graph of Figure 1(a) (tin-side) indicates that, for a failure probability of 5% (usually

associated with the characteristic fractile value of strength), the expected failure stress is

about 28 MPa. If the failure probability is Pf = 50%, which is representative of the median

strength, the failure stress increases to 42 MPa.

When testing a very reduced number of specimens, it is not possible to build up any statistics.

If just 1-2 specimens are used, as is usually the case for full-scale testing, one could expect any

value of strength because the number of data is certainly insufficient for any interpretation.
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Table 2: Relevant parameters for the analysis of glass strength.

Thermo-hygrometric n v0 Y KIc

conditions [m/s] [MPa m1/2]

T=23◦C, RH=55% 16 0.0025 2.24/π 0.75

However, albeit tentatively, the value that should be expected to be the most frequent is the

one associated with the median of the distribution of strengths.

It should be noticed from the graphs of Figure 1 that the median is about twice the 5%

fractile value of the distribution, for both the tin-side and the air-side. Recall that the 5%

fractile is usually taken as a characteristic value of strength and represents the reference value

for structural calculations. Therefore, if the test provided the median value of strength one

should not be surprised to find, from the experiment, a value much higher than the reference

value for design. However, we have to mention, from private and public discussions with

engineers and architects, that when tests provide strengths much higher than the reference

stress, there is always a certain criticism for standards, considered too much conservative

and imposing a redundant and expensive design. However, we have to observe that, whereas

for more traditional building materials such as steel the difference between the characteristic

and the median value of the assumed distribution of strength is not so relevant, for the case

of glass it is quite impressive. This is essentially due to the higher dispersion of the strength

data for this material.

Another consideration can be made. Referring to the graphs of Figure 1(a) and considering

the strength associated with the 5% failure probability, a virtual vertical line can be drawn

from it that intercepts the 50% failure probability line at a precise point. It may thus be
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observed that more than one day of applied constant stress is necessary to obtain the 50%

of collapse at the same stress level that corresponds to a 5% failure probability in 5 minutes.

However, one can obtain the 50% probability of failure in 5 minutes by increasing the stress

level from 28 MPa to 42 MPa. Therefore, if the tests have to be accelerated, it is convenient

to increase the applied stress level. The model provides the relationship between the state

of stress, the time to failure and the target probability of failure.
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Figure 1: Time-to-failure vs. stress plots for different failure probabilities. Equi-biaxial state of stress: a)

tin-side surface; b) air-side surface.

Analogous considerations, at the qualitative level, hold for the air-side of Figure 1(b). As

remarked in [4], in general the strength on the air-side is slightly higher than on the tin-side.

It should be observed that almost ten days are necessary to have a Pf = 0.5 probability of

breaking the specimens under the same applied stress associated with a 5% failure probability
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Figure 2: Strength corresponding to an equi-biaxial state of stress applied for 5 minutes, as a function of

the failure probability. Tin- and air-side distributions.

in 5 minutes.

Figure 2 shows the comparison between the failure stresses under a 5-minute constant load

for the tin-side and the air-side surfaces, as a function of the failure probability Pf . In

general the air-side curve is higher than the tin-side curve apart from very low values of Pf .

This is a consequence of the fact that, as observed in [4], although the air-side is stronger

than the tin-side, the statistical dispersion of data is also higher: this penalizes the values

associated with a low probability of collapse.

Let us pass to consider the case of a test at constant loading rate. The re-scaling of the

expected results for different load rates is obtained from equation (2.28), taking into account

(2.29).

The graphs of Figure 3 represent the failure stress fg as a function of the loading rate σ̇ (in

logarithmic scale) for several values of the failure probability Pf , for both the tin-side (left-

hand-side graph) and the air-side (right-hand-side graph). An increment of the strength can

be observed when, fixing the stress rate (for example σ̇ = 2 MPa) one passes from Pf = 0.05

(fg ≃ 40 MPa) to Pf = 0.5 (fg ≃ 58 MPa). It should also be noted that the curves increase

their slope as the failure probability increases, being almost horizontal for very low Pf . For
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Figure 3: Glass strength as a function of the loading rate for varying failure probability. Equi-biaxial stress

state: a) tin-side surface; b) air-side surface.

example, for Pf = 10−6 the expected value of strength is fg ≃ 8 MPa for σ̇ = 0.2 MPa/s,

whereas it is fg ≃ 9 MPa for σ̇ = 2 MPa/s. On the other hand, considering the curve

Pf = 0.5, one passes from fg ≃ 51 MPa for σ̇ = 0.2 MPa/s, to fg ≃ 58 MPa for σ̇ = 2

MPa/s.

In conclusion, increasing the loading rate does not affect very much the strength when low

probabilities are taken into account, while it has a strong effect when one considers the

probability associated with the median value of strength. This can be of importance while

interpreting the results on a very reduced number of specimens, for which the median value

is, in any case, the expected value.

3.2. Four point bending (4PB)

The four point bending is a widely used testing procedure to characterize the flexural strength

of glass. For the sake of this example, reference is made to the tests recorded in [4], that only

slightly differ from the prescriptions of EN 1288-3:2000 [2] for what concerns the specimen

size. The support span is 360 mm, the load span 200 mm, the glass width is 400 mm and

the thickness 6 mm. Therefore, a loaded area of 400× 200 mm2, corresponding to that part

of the beam comprised between the supports, has been considered in the calculations. Such
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a type of test generates an almost uniaxial stress field on the surface of the glass4 so that,

now, the value of the correction factor C from equation (2.9) is (σ2 = 0 and r = 0)

C =

[
2

π

∫ π/2

0

(cos2 ψ)mdψ

]1/m

. (3.1)

To evaluate the time to failure under constant stress, equations (2.21) and (2.23) can be

applied. The value of kA (effective area), to be used in (2.23), is evaluated through (2.11).

Since under 4PB the stress on the surface between the supports is constant and equal to the

maximum stress, setting σ1 = σmax one finds

kA =

∫
A

(Cσ1)
mdA

σm
max

= CmA → k = Cm. (3.2)

Values of k obtained for the tin-side and the air-side are summarized later on in Table 3.

Figure 4 shows the time-to-failure vs. stress graphs for the tin-side and the air-side surface

for different values of Pf . Observe, first of all, that for any given Pf and tf , the expected

failure stress is higher than that corresponding to the equibiaxial stress field of Section 3.1.

This is a general characteristic, confirmed by experiments [4], that is evidenced in the graphs

of Figure 5, where the stress σa,5min corresponding to tf = 5 minutes, (values corresponding

to the horizontal lines in Figure 4(a) and Figure 4(b)) is plotted as a function of Pf . In

particular, the value corresponding to Pf = 0.5 is of the order of ∼ 76 MPa (tin-side), much

greater than the one associated with the equibiaxial stress field (∼ 42 MPa, as per Figure 2).

The higher values are due to the fact that, in a uniaxial state of stress, the probability that

the orientation of the crack plane is orthogonal to the principal direction of stress is less

4We are neglecting, in this calculations, the edge effects due to the high width-on-thickness ratio, that

lead to higher stress close to the borders than at the center. This effect is certainly of importance, but our

aim here is to discuss, from a theoretical point of view, the effects of the type of stress, i.e., uniaxial vs.

equi-biaxial.
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than in a equi-biaxial state of stress. In other words, in a equi-biaxial stress field more crack

orientations could be critical.

Moreover, observe that also in this case the air-side curve is always higher than the tin-side

curve, apart from the region of very low probabilities of failure, where the vice-versa is true

although the two curves almost coincide. As already recalled, this is due to the fact that the

air-side is stronger than the tin-side, but its statistical dispersion of data is higher [4]. This

penalizes the values associated with the air-side while considering very low probability of

collapse, but the effect is less evident than for the equi-biaxial state of stress (see Figure 2).

This is because, roughly speaking, the uniaxial type of the stress somehow mitigates the

probabilistic dispersion.
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Figure 4: Time-to-failure versus stress plot for different failure probabilities. 4PB test: a) tin-side surface;

b) air-side surface.
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Figure 5: Four Point Bending (4PB) test. Strength corresponding to a load applied for 5 minutes as a

function of the failure probability.

In the case of load histories at different stress rates σ̇, the failure stress fg can be proba-

bilistically estimated through equations (2.28) and (2.29). Results are plotted in Figure 6

for both the tin- and the air-side. Similarly to the previous case, for any fixed load rate

there is an increase in the failure stress for increasing probabilities of failure. In general, the

load rate is uneventful in practice for low probabilities, while it is of importance for higher

values. Moreover, the air-side presents much higher values of the failure stress than the tin

side.

3.3. Plate under distributed load

Consider a 6 mm thick monolithic glass plate of area 1000 × 1000 mm2, simply supported

at the edges and under a uniformly distributed load. This case can be representative of a

situation in which the plate is part of a façade under wind pressure.

In order to evaluate the effective area Aeff = kA, the domain representative of the plate

surface is divided into N small sub-elements of equal area ∆Ai, i = 1...n, and for the i-th

element the mean value of the principal stress components σ1,i and σ2,i, and consequently the

ratio ri = σ2,i/σ1,i, is evaluated from a finite element analysis, considering geometric second
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Figure 6: Glass strength as a function of the loading rate for varying failure probability. 4PB test: a) tin-side

surface; b) air-side surface.

order effects. The correction factor Ci of each element ∆Ai is thus calculated through

(2.9). Then, from (2.10), the probability that the plate fails under the applied load can be

approximated through the expression

P = 1 − exp

[
−

N∑
i=1

(
Ci σ1,i
η0

)m

∆Ai

]
, (3.3)

so that the counterpart of (2.11) becomes

k =

N∑
i=1

(Ci σ1,i)
m∆Ai

A(σmax)
m . (3.4)

In this way, one obtains [19] ktin = 0.138 for the tin-side and kair = 0.1764 for the air-side.

For the sake of comparison, the values of k for all the cases so far considered are summarized

in Table 3. As expected, the plate under uniform pressure corresponds to the lower values

of k, indicating that for this condition the state of stress is the least “dangerous”.

Once k has been calculated, expressions (2.21) and (2.23) can be applied to find the time-

to-failure tf as a function of the applied (constant) maximum stress. Results are plotted in

Figure 7(a) and Figure 7(b) for the tin-side and the air-side respectively. Figure 8 shows the
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Table 3: Parameters k that define the effective area Aeff

for the cases under consideration.

Case ktin kair

Equibiaxial stress field 1 1

4PB test 0.205 0.237

Plate under uniform pressure 0.138 0.1764

maximum failure stress of 5 minute duration as a function of Pf . At the qualitative level,

one can draw the same conclusions already presented for the previous cases.

However, comparisons of figures 1, 4 and 7 evidences that, for fixed load duration, the

variation of strength associated with diverse probabilities of failure is not the same. In

particular, results for the pressurized plate case are interspersed between the equi-biaxial

stress field and the uniaxial stress field of the 4PB case. This is evident from Figure 9, which

collects the graphs of Figures 2, 5 and 8: the strength corresponding to a load applied for

5 minutes is plotted as a function of the failure probability (air-side curves are represented

with thicker lines). It should be noted that the highest values are obtained for the 4PB test,

air-side surface, while the lowest values are in general obtained for an equibiaxial stress field,

tin-side surface. All these findings are in agreement with experimental results [4].

The effect of different stress rates σ̇ on the failure stress fg has been considered by applying

equations (2.28) and (2.29). The corresponding results are plotted in Figure 10. These are

qualitatively similar to the graphs of Figures 3 and 6, but one can again notice that the

values of strength are, for the case at hand, intermediate between the equi-biaxial and the

uniaxial stress state.

24



Prep
rin

t

10
0

10
1

10
2

5 s

1 min

5 min

1 hour

1 day

10 days

1 month

1 year

10 years

50 years

σ
a
 [MPa]

t f

 

 
P

f
=10−6

P
f
=10−5

P
f
=10−4

P
f
=10−3

P
f
=10−2

P
f
=0.05

P
f
=0.1

P
f
=0.5

t
f
=5 min

(a)

10
0

10
1

10
2

5 s

1 min

5 min

1 hour

1 day

10 days

1 month

1 year

10 years

50 years

σ
a
 [MPa]

t f

 

 
P

f
=10−6

P
f
=10−5

P
f
=10−4

P
f
=10−3

P
f
=10−2

P
f
=0.05

P
f
=0.1

P
f
=0.5

t
f
=5 min

(b)

Figure 7: Plate under uniform pressure. Time-to-failure vs. stress plot for different failure probabilities. a)

Tin-side surface; b) air-side surface.
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Figure 8: Plate under uniform pressure. Strength corresponding to a load applied for 5 minutes as a function

of the failure probability.
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Figure 9: Strength corresponding to a load constantly applied for 5 minutes, as a function of the failure

probability. Effect of different stress fields (thin lines refer to the tin-side, while thick lines represent the

air-side).
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Figure 10: Glass strength as a function of the loading rate for varying failure probabilities. Plate under

distributed load: a) tin-side surface; b) air-side surface.

4. Conclusions

The main purpose of this article has been to evidence some critical issues in the design-by-

testing of glass structures. Glass is brittle and its strength is governed by the presence of

surface flaws, which can open and progress even under constant loading (subcritical crack

growth). This causes a strong size-effect, together with the dependence of strength upon

the type of loading (uniaxial vs. biaxial) and its duration (static fatigue). Moreover, since

there is a great dispersion in the statistical interpretation of the data, the material strength

presents a strong dependence upon the associated probability of failure Pf . This means that

even a small variation of Pf implies a noteworthy change in the corresponding value of the

strength.

Considering a widely accepted model of subcritical crack growth, and interpreting the results

from experiments with a distribution à la Weibull, it has been possible to analyze in detail

the results of hypothetical experiments in three paradigmatic conditions: i) plate under an

equibiaxial state of stress; ii) four-point bending; iii) simply supported plate under uniform

pressure. If one considers the strength associated with the application of a constant loading

for a prescribed time, or the value of strength corresponding to a constant stress rate, a few

definitive conclusions can be drawn.
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The median value of strength, for which Pf = 0.5, can be much higher than the 5% fractile

value, which usually represents the reference value in structural standards. However, the

difference can be quite variable, depending upon the type of loading and the size of the

specimen. For constant loading, the time to failure is strongly dependent upon the target

probability, passing from a few minutes to several days if the value of Pf changes from, say,

0.05 to 0.5. On the other hand, for fixed time of loading, a small variation of the applied

stress implies a noteworthy variation of the expected probability of failure. This can be of

importance if one is interested in accelerating the duration of an experimental campaign.

The model proposed here allows to correlate the value of the applied load with the target

probability of failure in a prescribed time.

Of course, the type of loading and the size of the specimens strongly affect the results.

The failure stress is greater under uniaxial stress field (4PB) than under equi-biaxial stress,

because under the latter condition there is the highest probability of finding a dominant crack

at right angle to the principal direction of tensile stress. The dependence of the strength

upon Pf is also the most marked in an equi-biaxial state of stress. The uniaxial state of stress

appears to be associated with a softer dependence, but it is always necessary to carefully

consider the state of stress in the whole specimen, calculating in particular the effective area

of loading.

Testing at constant load rate has also been considered, evaluating the effects of the load rate

on the glass strength as a function of the target failure probability Pf . In such conditions,

the ultimate strength is again strongly affected by Pf . In general, the higher the stress rate,

the higher is the strength of glass, but this dependence may vary according to Pf . At very

low probabilities, of the order of 10−6 − 10−5, such a dependence is barely visible, but at

higher probabilities there is a superlinear dependence of the strength upon the logarithm of

the stress rate. Also for this loading condition, there is a strong influence of specimen size

and type of stress.

Recall that it is always important to distinguish the response of the tin-side of glass from that

of the air-side, because they are in general interpreted by two different Weibull distributions.

28



Prep
rin

t

The air-side presents higher strength than the tin-side, but also higher dispersion of data.

Consequently, when considering high target probabilities of failure, of the order of 10−3 −

10−2, the air side appears stronger than the tin-side, but the vice-versa is true at lower

probabilities, when the effect of dispersion overcomes that of strength.

The three aforementioned examples are quite simple, but all evidence that a careful pre-

liminary analysis is necessary to interpret results from any testing. The size of a full-scale

prototype is much larger than the specimens usually employed to assess the material prop-

erties according to the current standards; moreover, its state of stress is usually quite com-

plicated, being in general not assimilable to an equi-biaxial or uniaxial state. Therefore,

the experimentally-measured glass strength can be highly variable, and such a value does

not represent an objective, absolute, indication of the inherent strength, since it has been

shown that it depends on the test method as well as on the area under tension. Therefore a

probabilistic model, like the one proposed here, has to be used to interpret the results.

Unfortunately our personal experience, deriving from years of revisions of plans on behalf of

the Italian Ministry of Infrastructure and Transport, confirms that there are several cases,

indeed the majority, in which the reliability of complicated glass structures is claimed from

the results of the testing of just one full-scale prototype. Of course, testing one prototype is

better than nothing, but it is necessary to take into account all the aforementioned aspects

(size effect, type of stress, duration of loading), to determine what is the expected median

value of strength for the test according to an assumed statistical distribution of glass strength.

Comparison of the value of strength derived from an experiment with the characteristic

strength of glass, taken from standards, is meaningless.

Of course, the method proposed here is far from being exhaustive. Perhaps its greatest

shortcoming consists in having neglected the effects at the edges, where the defectiveness

due to manufacturing is greater than at the center of the glass ply. A specific statistical

characterization of the strength close to the borders of a glass ply, possibly interpreted by

a Weibull distribution, should be considered to characterize the strength of the prototype.

The procedure, which should not neglect to consider the length of the borders (size effect),
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has been indicated in [19], but the lack of experimental data for this specific aspect does not

allow, at the time of the present writing, to derive any quantitative indication. Moreover, no

consideration has been made here for heat-strengthened or thermally-toughened glass, but

also for this case we are still waiting to have sound experimental data to elaborate.
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